留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

半挂汽车列车高速变道稳定域估计

彭涛 关志伟 张荣辉 杜峰 宗长富 李克宁

彭涛, 关志伟, 张荣辉, 杜峰, 宗长富, 李克宁. 半挂汽车列车高速变道稳定域估计[J]. 交通运输工程学报, 2018, 18(4): 90-102. doi: 10.19818/j.cnki.1671-1637.2018.04.010
引用本文: 彭涛, 关志伟, 张荣辉, 杜峰, 宗长富, 李克宁. 半挂汽车列车高速变道稳定域估计[J]. 交通运输工程学报, 2018, 18(4): 90-102. doi: 10.19818/j.cnki.1671-1637.2018.04.010
PENG Tao, GUAN Zhi-wei, ZHANG Rong-hui, DU Feng, ZONG Zhang-fu, LI Ke-ning. Stability region estimation of lane change on highway for tractor-semitrailer[J]. Journal of Traffic and Transportation Engineering, 2018, 18(4): 90-102. doi: 10.19818/j.cnki.1671-1637.2018.04.010
Citation: PENG Tao, GUAN Zhi-wei, ZHANG Rong-hui, DU Feng, ZONG Zhang-fu, LI Ke-ning. Stability region estimation of lane change on highway for tractor-semitrailer[J]. Journal of Traffic and Transportation Engineering, 2018, 18(4): 90-102. doi: 10.19818/j.cnki.1671-1637.2018.04.010

半挂汽车列车高速变道稳定域估计

doi: 10.19818/j.cnki.1671-1637.2018.04.010
基金项目: 

国家自然科学基金项目 51775565

国家自然科学基金项目 51208500

天津市自然科学基金项目 16JCZDJC38200

天津市科技计划项目 16PTGCCX00150

天津职业技术师范大学人才启动项目 KYQD1710

详细信息
    作者简介:

    彭涛(1983-), 男, 山东临朐人, 天津职业技术师范大学高级工程师, 工学博士, 从事智能车路协同控制研究

    通讯作者:

    张荣辉(1981-), 男, 江西广丰人, 中山大学研究员, 工学博士

  • 中图分类号: U469.5

Stability region estimation of lane change on highway for tractor-semitrailer

More Information
  • 摘要: 为改善传统稳定域在评价铰接列车非稳态转向稳定性方面的不足, 提出了一种适用于半挂汽车列车的高速变道稳定域的估计方法; 建立了包含Pacejka魔术公式的半挂汽车列车四自由度非线性动力学模型, 通过半挂汽车列车高速变道的仿真和实车试验对比验证了所建模型的有效性; 在构建车辆系统Jacobian矩阵的基础上, 应用特征根法分析了车辆在高速阶跃转向和正弦转向2种情况下的稳定性; 基于Lyapunov稳定性定理, 通过构建Lyapunov能量函数, 分析了车辆极限状态时的系统能量与能量变化阈值, 获得了车辆高速变道稳定域, 并利用半挂汽车列车30m·s-1变道试验验证稳定域。分析结果表明: 高速变道过程中车辆系统Jacobian矩阵特征根大于0, 但最终收敛至小于0, 系统仍可保持稳定; 车辆高速变道稳定域为近似凹形曲面, 能量越接近中心区的低点, 车辆系统越稳定, 而一旦接近甚至超过能量阈值, 车辆系统将临近或发生失稳; 在半挂汽车列车30m·s-1变道试验中, 当Lyapunov能量接近阈值3.863 6J时, 车辆系统处于临近失稳状态。可见, 确定的半挂汽车列车高速变道稳定域, 能够较好地表征车辆系统在高速瞬态连续转向状态下的稳定性, 可为半挂汽车列车操纵稳定性评价和控制提供有益参考。

     

  • 图  1  半挂汽车列车平面运动

    Figure  1.  Tractor-semitrailer plane movement

    图  2  牵引车测试系统

    Figure  2.  Detecting system of tractor

    图  3  半挂车测试系统

    Figure  3.  Detecting system of semitrailer

    图  4  半挂汽车列车变道试验

    Figure  4.  Tractor-semitrailer lane change test

    图  5  车速和方向盘转角输入

    Figure  5.  Inputs of vehicle speed and steering wheel angle

    图  6  牵引车侧向加速度输出

    Figure  6.  Outputs of tractor lateral acceleration

    图  7  半挂车侧向加速度输出

    Figure  7.  Outputs of semitrailer lateral acceleration

    图  8  牵引车质心侧偏角输出

    Figure  8.  Outputs of side slip angle of tractor centroid

    图  9  半挂车质心侧偏角输出

    Figure  9.  Outputs of side slip angle of semitrailer centroid

    图  10  铰接角输出

    Figure  10.  Outputs of splice angle

    图  11  车辆变道运动状况

    Figure  11.  Vehicle lane change condition

    图  12  工况1前轮转角输入

    Figure  12.  Input of front wheel angle in condition 1

    图  13  工况1牵引车质心侧偏角输出

    Figure  13.  Output of side slip angle of tractor centroid in condition 1

    图  14  工况1的Jacobian矩阵特征根

    Figure  14.  Jacobian matrix eigenvalues in condition 1

    图  15  工况2牵引车质心侧偏角输出

    Figure  15.  Output of side slip angle of tractor centroid in condition 2

    图  16  工况2的Jacobian矩阵特征根4

    Figure  16.  Jacobian matrix eigenvalue 4in condition 2

    图  17  工况3前轮转角输入

    Figure  17.  Input of front wheel angle in condition 3

    图  18  工况3牵引车质心侧偏角输出

    Figure  18.  Output of side slip angle of tractor centroid in condition 3

    图  19  工况3的Jacobian矩阵特征根

    Figure  19.  Jacobian matrix eigenvalues in condition 3

    图  20  工况4牵引车质心侧偏角输出

    Figure  20.  Output of side slip angle of tractor centroid in condition 4

    图  21  工况4的Jacobian矩阵特征根3

    Figure  21.  Jacobian matrix eigenvalues 3in condition 4

    图  22  工况3车辆前轮转角与Lyapunov能量

    Figure  22.  Front wheel angles and Lyapunov energies in condition 3

    图  23  工况4牵引车横摆角速度与Lyapunov能量

    Figure  23.  Tractor yaw rates and Lyapunov energies in condition 4

    图  24  Lyapunov能量函数E(Z) 曲面

    Figure  24.  Surface of Lyapunov energy function E(Z)

    图  25  牵引车质心侧偏角-横摆角速度能量等势面

    Figure  25.  Energy equipotential surfaces of tractor centroid side slip angle and yaw rate

    图  26  牵引车质心侧偏角-铰接角能量等势面

    Figure  26.  Energy equipotential surfaces of tractor centroid side slip angle and splice angle

    图  27  牵引车质心侧偏角-横摆角速度稳定域

    Figure  27.  Stability region of side slip angle of tractor centroid and yaw rate

    图  28  牵引车质心侧偏角-铰接角稳定域

    Figure  28.  Stability region of side slip angle of tractor centroid and splice angle

    图  29  牵引车质心侧偏角-横摆角速度分布

    Figure  29.  Distribution of side slip angle of tractor centroid and yaw rate

    图  30  牵引车质心侧偏角-铰接角分布

    Figure  30.  Distribution of side slip angle of tractor centroid and splice angle

    图  31  实车状态参量分布

    Figure  31.  Distribution of state parameters of test vehicle

    表  1  Pacejka魔术公式相关参数取值

    Table  1.   Related parameters values of Pacejka's magic formula

    下载: 导出CSV

    表  2  不同工况方向盘转角输入

    Table  2.   Steering wheel angle inputs in different conditions

    下载: 导出CSV

    表  3  不同前轮转角对应车辆状态参量与Lyapunov能量

    Table  3.   Vehicle state parameters and Lyapunov energies with different front wheel angle

    下载: 导出CSV
  • [1] JOHNSON C W. Lateral stability of the driver/vehicle system: analytical results[D]. Ames: Iowa State University, 1983.
    [2] SAYERS M W, STRIBERSKY A. Computer algebra in nonlinear analyses of the straightline stability of combination vehicles[J]. Computers and Structures, 1992, 44 (1/2): 279-286.
    [3] DUNN A L, TANNER C B, MORR D R, et al. The influence of disablement of various brakes on the dry stopping performance and stability of a tractor-semitrailer[J]. SAE International Journal of Commercial Vehicles, 2009, 2 (1): 1-16. doi: 10.4271/2009-01-0099
    [4] BALREIRA E C, ELAYDI S, LUIS R. Local stability implies global stability for the planar ricker competition model[J]. Discrete and Continuous Dynamical Systems—Series B, 2014, 19 (2): 323-351. doi: 10.3934/dcdsb.2014.19.323
    [5] 《中国公路学报》编辑部. 中国汽车工程学术研究综述·2017[J]. 中国公路学报, 2017, 30 (6): 1-197. doi: 10.3969/j.issn.1001-7372.2017.06.001

    Editorial Department of China Journal of Highway and Transport. Review on China's automotive engineering research progress: 2017[J]. China Journal of Highway and Transport, 2017, 30 (6): 1-197. (in Chinese). doi: 10.3969/j.issn.1001-7372.2017.06.001
    [6] TROGER H, ZEMAN K. A nonlinear analysis of the generic types of loss of stability of the steady state motion of a tractor-semitrailer[J]. Vehicle System Dynamics, 1984, 13 (4): 161-172. doi: 10.1080/00423118408968773
    [7] DUNN A L. Jackknife stability of articulated tractor semitrailer vehicles with high-output brakes and jackknife detection on low coefficient surfaces[D]. Columbus: Ohio State University, 2003.
    [8] YANG Xiu-jian, XIONG Jian. Nonlinear yaw dynamics analysis and control for the tractor-semitrailer vehicle[J]. International Journal of Heavy Vehicle Systems, 2013, 20 (3): 253-288. doi: 10.1504/IJHVS.2013.054787
    [9] TOUSI S, BAJAJ A K, SOEDEL W. Closed-loop directional stability of car-trailer combinations in straight-line motion[J]. Vehicle System Dynamics, 1992, 21 (1): 333-360. doi: 10.1080/00423119208969015
    [10] LIU Zhao-heng. Characterisation of optimal human driver model and stability of a tractor-semitrailer vehicle system with time delay[J]. Mechanical Systems and Signal Processing, 2007, 21 (5): 2080-2098. doi: 10.1016/j.ymssp.2006.06.007
    [11] LIU Zhao-heng, HU Kun, CHUNG K W. Nonlinear analysis of a closed-loop tractor-semitrailer vehicle system with time delay[J]. Mechanical Systems and Signal Processing, 2016, 76/77: 696-711. doi: 10.1016/j.ymssp.2016.01.006
    [12] SHEN Shui-wen, WANG Jun, SHI Peng, et al. Nonlinear dynamics and stability analysis of vehicle plane motions[J]. Vehicle System Dynamics, 2007, 45 (1): 15-35. doi: 10.1080/00423110600828285
    [13] SADRI S. On dynamic and stability analysis of the nonlinear vehicle models using the concept of Lyapunov stability[D]. Winnipeg: University of Manitoba, 2015.
    [14] YAN Yu-guang, XU Hong-guo, LIU Hong-fei. Estimating vehicle stability region based on energy function[J]. Discrete Dynamics in Nature and Society, 2015, 2015: 1-7.
    [15] REN Yuan-yuan, ZHENG Xue-lian, LI Xian-sheng. Handling stability of tractor semitrailer based on handling diagram[J]. Discrete Dynamics in Nature and Society, 2012, 2012: 1-16.
    [16] 施树明, 毛振勇, 向辉, 等. 车辆转向的稳定性非线性分析方法[J]. 机械工程学报, 2007, 43 (10): 77-81, 88. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200710018.htm

    SHI Shu-ming, MAO Zhen-yong, XIANG Hui, et al. Nonlinear analysis methods of vehicle cornering stability[J]. Chinese Journal of Mechanical Engineering, 2007, 43 (10): 77-81, 88. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200710018.htm
    [17] KO Y E, SONG C K. Vehicle modeling with nonlinear tires for vehicle stability analysis[J]. International Journal of Automotive Technology, 2010, 11 (3): 339-344. doi: 10.1007/s12239-010-0042-0
    [18] LIU Li, SHI Shu-ming, SHEN Shui-wen. Vehicle planar motion stability study for tyres working in extremely nonlinear region[J]. Chinese Journal of Mechanical Engineering, 2010, 23 (2): 185-194. doi: 10.3901/CJME.2010.02.185
    [19] YOON M Y, BAEK S H, BOO K S, et al. Map-based control method for vehicle stability enhancement[J]. Journal of Central South University, 2015, 22 (1): 114-120. doi: 10.1007/s11771-015-2501-2
    [20] 刘飞, 熊璐, 邓建华, 等. 基于相平面法的车辆行驶稳定性判定方法[J]. 华南理工大学学报: 自然科学版, 2014, 42 (11): 63-70. https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG201411011.htm

    LIU Fei, XIONG Lu, DENG Jian-hua, et al. Vehicle stability criterion based on phase plane method[J]. Journal of South China University of Technology: Natural Science Edition, 2014, 42 (11): 63-70. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG201411011.htm
    [21] 宗长富, 朱天军, 麦莉, 等. 基于全局增益调度控制的重型半挂车主动侧倾控制算法[J]. 机械工程学报, 2008, 44 (10): 138-144. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200810024.htm

    ZONG Chang-fu, ZHU Tian-jun, MAI Li, et al. Active roll control algorithm of heavy tractor semi-trailer based on global gain scheduling control[J]. Chinese Journal of Mechanical Engineering, 2008, 44 (10): 138-144. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200810024.htm
    [22] 聂枝根, 王万琼, 王超, 等. 中高速重型半挂车适时模式切换的集成控制策略[J]. 交通运输工程学报, 2017, 17 (6): 135-149. http://transport.chd.edu.cn/article/id/201706015

    NIE Zhi-gen, WANG Wan-qiong, WANG Chao, et al. Integrated control strategy of articulated heavy vehicle based on timely mode switching under medium/high speed conditions[J]. Journal of Traffic and Transportation Engineering, 2017, 17 (6): 135-149. (in Chinese). http://transport.chd.edu.cn/article/id/201706015
    [23] ZHANG Rong-hui, HE Zhao-cheng, WANG Hai-wei, et al. Study on self-tuning tyre friction control for developing mainservo loop integrated chassis control system[J]. IEEE Access, 2017, 5 (99): 6649-6660.
    [24] SUN Xiao-juan, ZHANG Hong, MENG Wen-jun, et al. Primary resonance analysis and vibration suppression for the harmonically excited nonlinear suspension system using apair of symmetric viscoelastic buffers[J]. Nonlinear Dynamics, 2018, 2018: 1-23.
    [25] 游峰, 张荣辉, 王海玮, 等. 欠驱动半挂汽车列车的运动建模与跟踪控制[J]. 吉林大学学报: 工学版, 2014, 44 (5): 1296-1302. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201405012.htm

    YOU Feng, ZHANG Rong-hui, WANG Hai-wei, et al. Dynamic model and tracking control of tractor semi-trailer vehicle with underactuated system[J]. Journal of Jilin University: Engineering and Technology Edition, 2014, 44 (5): 1296-1302. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201405012.htm
    [26] GHAFFARI A, KHODAYARI A, ARVIN S, et al. Lane change trajectory model considering the driver effects based on MANFIS[J]. International Journal of Automotive Engineering, 2012, 2 (4): 261-275.
    [27] WANG Qi, LI Zhi-heng, LI Li. Investigation of discretionary lane-change characteristics using next-generation simulation data sets[J]. Journal of Intelligent Transportation Systems, 2014, 18 (3): 246-253.
    [28] ZHANG Rong-hui, MA Yu-bo, YOU Feng, et al. Exploring to direct the reaction pathway for hydrogenation of levulinic acid intoγ-valerolactone for future clean-energy vehicles over a magnetic Cu-Ni catalyst[J]. International Journal of Hydrogen Energy, 2017, 42 (40): 25185-25194.
    [29] SAEEDI M A, KAZEMI R, AZADI S. Analysis of roll control system to eliminate liquid sloshing effect on lateral stability of an articulated vehicle carrying liquid[J]. International Journal of Engineering C: Aspects, 2016, 29 (3): 386-393.
    [30] 张义花, 许洪国, 刘宏飞, 等. 双挂汽车列车操纵稳定性评价指标研究[J]. 中国公路学报, 2017, 30 (5): 145-151. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201705019.htm

    ZHANG Yi-hua, XU Hong-guo, LIU Hong-fei, et al. Research on the evaluation index of handling stability of tractor and double trailer combination[J]. China Journal of Highway and Transport, 2017, 30 (5): 145-151. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201705019.htm
  • 加载中
图(31) / 表(3)
计量
  • 文章访问数:  652
  • HTML全文浏览量:  136
  • PDF下载量:  402
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-04
  • 刊出日期:  2018-08-25

目录

    /

    返回文章
    返回