留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速列车随车移动点的脉动风速模拟

李田 秦登 蔡华闽 张继业

李田, 秦登, 蔡华闽, 张继业. 高速列车随车移动点的脉动风速模拟[J]. 交通运输工程学报, 2018, 18(4): 112-119. doi: 10.19818/j.cnki.1671-1637.2018.04.012
引用本文: 李田, 秦登, 蔡华闽, 张继业. 高速列车随车移动点的脉动风速模拟[J]. 交通运输工程学报, 2018, 18(4): 112-119. doi: 10.19818/j.cnki.1671-1637.2018.04.012
LI Tian, QIN Deng, CAI Hua-min, ZHANG Ji-ye. Simulation of fluctuating wind velocity at given position on moving high-speed train[J]. Journal of Traffic and Transportation Engineering, 2018, 18(4): 112-119. doi: 10.19818/j.cnki.1671-1637.2018.04.012
Citation: LI Tian, QIN Deng, CAI Hua-min, ZHANG Ji-ye. Simulation of fluctuating wind velocity at given position on moving high-speed train[J]. Journal of Traffic and Transportation Engineering, 2018, 18(4): 112-119. doi: 10.19818/j.cnki.1671-1637.2018.04.012

高速列车随车移动点的脉动风速模拟

doi: 10.19818/j.cnki.1671-1637.2018.04.012
基金项目: 

国家自然科学基金项目 51605397

国家自然科学基金项目 51475394

详细信息
    作者简介:

    李田(1984-), 男, 湖南醴陵人, 西南交通大学助理研究员, 工学博士, 从事列车空气动力学研究

  • 中图分类号: U271.91

Simulation of fluctuating wind velocity at given position on moving high-speed train

More Information
  • 摘要: 以修正Karman风速谱为目标谱, 基于最小信息准则确定线性滤波法自回归模型的阶数, 采用线性滤波法和谐波叠加法模拟了高速列车随车移动点的脉动风速时间历程, 并验证了模拟结果的可靠性, 对比了2种方法模拟脉动风速均值、方差、幅频、相频等特征变量以及风速分布规律的差异, 并分析了2种方法的计算效率。分析结果表明: 采用2种方法得到的脉动风速功率谱密度均围绕目标谱波动; 脉动风速均值约为0, 由于随机数的使用, 使得脉动风速峰值在个别时间点存在差异, 且在低频区域得到的仿真谱差异可能超过50%;不同风向角下计算所得脉动风速均值的差异小于2%, 且脉动风速的分布规律几乎一致; 当列车运行速度为80m·s-1, 且距地面高度10m处平均风速为25m·s-1时, 2种方法得到的脉动风速峰值均值间的差异小于1%, 表明2种方法均适用于模拟高速列车随车移动点的脉动风速; 2种方法所得脉动风速幅值均随脉动风速频率的增大而减小, 相位在-π~π内波动, 脉动风速分布在-3~3m·s-1内的差异仅为0.48%;采用2种方法所得脉动风速点数满足高斯分布, 且高斯分布拟合系数最大差异为3.15%;采用线性滤波法模拟所得脉动风速波动比谐波叠加法大7.89%, 其稳定性劣于谐波叠加法; 采用线性滤波法的计算时间约为谐波叠加法的1/9, 其计算效率远高于谐波叠加法。

     

  • 图  1  脉动风速曲线

    Figure  1.  Curves of fluctuating wind velocity

    图  2  脉动风速仿真功率谱与目标谱对比

    Figure  2.  Comparison of simulated power spectrums and target spectrum of fluctuating wind velocity

    图  3  不同风向角时脉动风速对比

    Figure  3.  Comparison of fluctuating wind velocities with different yaw angles

    图  4  两种方法所得脉动风速均值和方差对比

    Figure  4.  Comparison of mean values and variances of fluctuating wind velocities obtained from two methods

    图  5  两种方法所得脉动风速幅值谱和相位谱对比

    Figure  5.  Comparison of amplitude spectrums and phase spectrums of fluctuating wind velocity obtained from two methods

    图  6  脉动风速分布

    Figure  6.  Distributions of fluctuating wind velocity

    表  1  主要参数

    Table  1.   Main parameters

    下载: 导出CSV

    表  2  高斯分布拟合系数的分布区间

    Table  2.   Distribution intervals of Gaussian distribution fitting coefficients

    下载: 导出CSV

    表  3  两种方法计算效率对比

    Table  3.   Comparison of computational efficiencies between two methods

    下载: 导出CSV
  • [1] HOPPMANN U, KOENIG S, TIELKES T, et al. A shortterm strong wind prediction model for railway application: design and verification[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90 (10): 1127-1134. doi: 10.1016/S0167-6105(02)00226-X
    [2] 田红旗. 中国列车空气动力学研究进展[J]. 交通运输工程学报, 2006, 6 (1): 1-9. http://transport.chd.edu.cn/article/id/200601001

    TIAN Hong-qi. Study evolvement of train aerodynamics in China[J]. Journal of Traffic and Transportation Engineering, 2006, 6 (1): 1-9. (in Chinese). http://transport.chd.edu.cn/article/id/200601001
    [3] SUZUKI M, TANEMOTO K, MAEDA T. Aerodynamic characteristics of train/vehicles under cross winds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91 (1/2): 209-218.
    [4] FLYNN D, HEMIDA H, BAKER C. On the effect of crosswinds on the slipstream of a freight train and associated effects[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 156: 14-28. doi: 10.1016/j.jweia.2016.07.001
    [5] HEMIDA H, BAKER C. Large-eddy simulation of the flow around a freight wagon subjected to a crosswind[J]. Computers and Fluids, 2010, 39 (10): 1944-1956. doi: 10.1016/j.compfluid.2010.06.026
    [6] HEMIDA H, KRAJNOVIC'S. LES study of the influence of the nose shape and yaw angles on flow structures around trains[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98 (1): 34-46. doi: 10.1016/j.jweia.2009.08.012
    [7] 郗艳红, 毛军, 李明高, 等. 高速列车侧风效应的数值模拟[J]. 北京交通大学学报, 2010, 34 (1): 14-19. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201001005.htm

    XI Yan-hong, MAO Jun, LI Ming-gao, et al. Numerical study on the crosswind effects of high-speed train[J]. Journal of Beijing Jiaotong University, 2010, 34 (1): 14-19. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201001005.htm
    [8] 王政, 李田, 张继业. 不同类型横风下高速列车气动性能研究[J]. 机械工程学报, 2018, 54 (4): 203-211. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804030.htm

    WANG Zheng, LI Tian, ZHANG Ji-ye. Research on aerodynamic performance of high-speed train subjected to different types of crosswind[J]. Journal of Mechanical Engineering, 2018, 54 (4): 203-211. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804030.htm
    [9] 任尊松, 徐宇工, 王璐雷, 等. 强侧风对高速列车运行安全性影响研究[J]. 铁道学报, 2006, 28 (6): 46-50. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200606008.htm

    REN Zun-song, XU Yu-gong, WANG Lu-lei, et al. Study on the running safety of high-speed trains under strong cross winds[J]. Journal of the China Railway Society, 2006, 28 (6): 46-50. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200606008.htm
    [10] LI Tian, YU Meng-ge, ZHANG Ji-ye, et al. A fast equilibrium state approach to determine interaction between stochastic crosswinds and high-speed trains[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 143: 91-104. doi: 10.1016/j.jweia.2015.04.002
    [11] 曹映泓, 项海帆, 周颖. 大跨度桥梁随机风场的模拟[J]. 土木工程学报, 1998, 31 (3): 72-79. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC199803010.htm

    CAO Ying-hong, XIANG Hai-fan, ZHOU Ying. Simulation of stochastic wind field on long-span bridge[J]. China Civil Engineering Journal, 1998, 31 (3): 72-79. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC199803010.htm
    [12] 丁泉顺. 大跨度桥梁耦合颤抖振响应的精细化分析[D]. 上海: 同济大学, 2001.

    DING Quan-shun. Refinement of coupled flutter and buffeting analysis for long-span bridges[D]. Shanghai: Tongji University, 2001. (in Chinese).
    [13] GERSCH W, YONEMOTO J. Synthesis of multivariate random vibration systems: a two-stage least squares AR-MA model approach[J]. Journal of Sound and Vibration, 1977, 52 (4): 553-565. doi: 10.1016/0022-460X(77)90370-4
    [14] REED D A, SCANLAN R H. Timeseries analysis of cooling tower wind loading[J]. Journal of Structural Engineering, 1983, 109 (2): 538-554. doi: 10.1061/(ASCE)0733-9445(1983)109:2(538)
    [15] IANNUZZI A, SPINELLI P. Artificial wind generation and structural response[J]. Journal of Structural Engineering, 1987, 113 (12): 2382-2398.
    [16] HUANG Z, CHALABI Z S. Use of time-series analysis to model and forecast wind speed[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 56 (2/3): 311-322.
    [17] 杨波. 随机脉动风场的数值模拟[D]. 兰州: 兰州大学, 2016.

    YANG Bo. Numerical simulation of stochastic fluctuating wind field[D]. Lanzhou: Lanzhou University, 2016. (in Chinese).
    [18] COOPER R K. Atmospheric turbulence with respect to moving ground vehicles[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1984, 17 (2): 215-238.
    [19] BAKER C J. Some complex applications of the"wind loading chain"[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91 (12-15): 1791-1811.
    [20] 于梦阁, 张继业, 张卫华. 随机风作用下高速列车的非定常气动载荷[J]. 机械工程学报, 2012, 48 (20): 113-120. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201220023.htm

    YU Meng-ge, ZHANG Ji-ye, ZHANG Wei-hua. Unsteady aerodynamic loads of high-speed trains under stochastic winds[J]. Journal of Mechanical Engineering, 2012, 48 (20): 113-120. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201220023.htm
    [21] YU Meng-ge, LIU Jia-li, LIU Da-wei, et al. Investigation of aerodynamic effects on the high-speed train exposed to longitudinal and lateral wind velocities[J]. Journal of Fluids and Structures, 2016, 61: 347-361.
    [22] YU Meng-ge, ZHANG Ji-ye, ZHANG Ke-yue, et al. Study on the operational safety of high-speed trains exposed to stochastic winds[J]. Acta Mechanica Sinica, 2014, 30 (3): 351-360.
    [23] 谭仕发, 缪炳荣, 史艳民, 等. 基于线性滤波法的高速列车外流场脉动风速模拟研究[J]. 铁道车辆, 2016, 54 (9): 10-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL201609003.htm

    TAN Shi-fa, MIAO Bing-rong, SHI Yan-min, et al. Simulation and research on pulsating wind speed in external flow field of high speed trains based on linear filter method[J]. Rolling Stock, 2016, 54 (9): 10-14. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL201609003.htm
    [24] EN 14067-6: 2010, railway applications—aerodynamics part 6: requirement and test procedures for cross wind assessment[S].
    [25] BAKER C J. The simulation of unsteady aerodynamic cross wind forces on trains[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98 (2): 88-99.
    [26] SHINOZUKA M. Simulation of multivariate and multidimensional random processes[J]. The Journal of the Acoustical Society of America, 1971, 49 (1): 357-368.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  684
  • HTML全文浏览量:  106
  • PDF下载量:  469
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-28
  • 刊出日期:  2018-08-25

目录

    /

    返回文章
    返回