留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于AIS数据的船舶安全航行水深参考图

何正伟 杨帆 刘力荣

何正伟, 杨帆, 刘力荣. 基于AIS数据的船舶安全航行水深参考图[J]. 交通运输工程学报, 2018, 18(4): 171-181. doi: 10.19818/j.cnki.1671-1637.2018.04.018
引用本文: 何正伟, 杨帆, 刘力荣. 基于AIS数据的船舶安全航行水深参考图[J]. 交通运输工程学报, 2018, 18(4): 171-181. doi: 10.19818/j.cnki.1671-1637.2018.04.018
HE Zheng-wei, YANG Fan, LIU Li-rong. Ship safe navigation depth reference map based on AIS data[J]. Journal of Traffic and Transportation Engineering, 2018, 18(4): 171-181. doi: 10.19818/j.cnki.1671-1637.2018.04.018
Citation: HE Zheng-wei, YANG Fan, LIU Li-rong. Ship safe navigation depth reference map based on AIS data[J]. Journal of Traffic and Transportation Engineering, 2018, 18(4): 171-181. doi: 10.19818/j.cnki.1671-1637.2018.04.018

基于AIS数据的船舶安全航行水深参考图

doi: 10.19818/j.cnki.1671-1637.2018.04.018
基金项目: 

国家自然科学基金项目 51479157

中央高校基本科研业务费专项资金资助项目 2018Ⅲ064GX

中央高校基本科研业务费专项资金资助项目 2018-zy-127

详细信息
    作者简介:

    何正伟(1977-), 男, 湖北洪湖人, 武汉理工大学副教授, 工学博士, 从事海事大数据处理与水上交通环境仿真研究

    通讯作者:

    杨帆(1993-), 男, 山西晋城人, 武汉理工大学工学硕士研究生

  • 中图分类号: U612.26

Ship safe navigation depth reference map based on AIS data

More Information
  • 摘要: 通过挖掘海量AIS数据, 提出了一种新的航道水深信息获取方法, 即构建船舶安全航行水深参考图; 采用数据预处理的方法对历史与在线的AIS数据进行清洗和修补, 生成船舶运动轨迹; 选定船舶航行区域的时间与经纬度, 采用K-means聚类算法对船舶航行过程中的吃水数据进行聚类分析, 得到不同安全航行区域的船舶分类, 运用BP神经网络模型预测并补齐AIS数据中缺失的船舶最大吃水信息; 分割船舶历史轨迹, 当子轨迹的时间间隔在10~20min时, 采用Spline插值方法对船舶轨迹中的丢失数据进行插值; 采用凸包构建同类船舶的安全航行水深区域图, 将不同吃水类型船舶的安全航行水深区域图合并, 得到船舶安全航行水深合并图; 将不同吃水类型的船舶安全航行水深合并图与航道图叠加, 得到船舶安全航行水深参考图。试验结果表明: 当聚类算法参数设置为4时, 聚类后得到4类船舶, 对应的船舶最大吃水范围分别为0.1~4.8、4.8~6.6、6.6~10.0、10.0~13.0m, 对应的至少可通航船舶吃水分别为1.8、2.4、3.3、5.0m, 说明船舶最大吃水与至少可通航船舶吃水呈正相关关系; 构建的船舶安全航行水深参考图在电子航道图中覆盖了86%的航道, 并与航道图的深水部分重合率为80%, 因此, 构建的船舶安全航行水深参考图能反映航道水深的真实情况, 满足不同类别船舶的导航需求。

     

  • 图  1  设计流程

    Figure  1.  Design flow

    图  2  BP神经网络结构

    Figure  2.  Structure of BP neural network

    图  3  凸包构建

    Figure  3.  Construction of convex hull

    图  4  选取的航道地图

    Figure  4.  Selected channel map

    图  5  BP神经网络

    Figure  5.  BP neural network

    图  6  训练之后的残差校验结果

    Figure  6.  Residual check result after training

    图  7  插值前的船舶轨迹

    Figure  7.  Ship trajectory before interpolation

    图  8  插值后的船舶轨迹

    Figure  8.  Interpolated ship trajectory

    图  9  船舶运动轨迹

    Figure  9.  Ship motion trajectories

    图  10  船舶的安全航行区域

    Figure  10.  Safe navigation area of ship

    图  11  T1类船舶航行区域

    Figure  11.  Class T1 ship navigation area

    图  12  T2类船舶航行区域

    Figure  12.  Class T2 ship navigation area

    图  13  T3类船舶航行区域

    Figure  13.  Class T3 ship navigation area

    图  14  T4类船舶航行区域

    Figure  14.  Class T4 ship navigation area

    图  15  船舶安全航行参考图

    Figure  15.  Ship safe navigation reference map

    图  16  叠加航道等深线之后的安全水深参考图

    Figure  16.  Safe navigation depth reference map superimposed with channel isobaths

    图  17  航道图与船舶安全航行水深参考图叠加

    Figure  17.  Channel chart superimposed with safe navigation depth reference map

    表  1  船长、船宽和最大吃水的相关性

    Table  1.   Correlation between ship length, ship breadth and maximum draft

    下载: 导出CSV

    表  2  船舶类型和最大吃水的相关性

    Table  2.   Correlation between ship type and maximum draft

    下载: 导出CSV

    表  3  不同输入神经个数下平均绝对误差和均方误差Fig.3 Mean absolute errors and mean squared errors under different numbers of input neurons

    下载: 导出CSV

    表  4  部分预测值与真实值比较

    Table  4.   Comparison of partial predicted values and real values

    下载: 导出CSV

    表  5  船舶AIS动态信息

    Table  5.   AIS dynamic information of ship

    下载: 导出CSV

    表  6  插值点的船舶数据

    Table  6.   Ship data of interpolation points

    下载: 导出CSV

    表  7  安全航行船舶类别

    Table  7.   Category of safe navigation ship

    下载: 导出CSV
  • [1] 林祎珣. 数据挖掘技术在海上交通特征分析中的应用研究[D]. 厦门: 集美大学, 2011.

    LIN Yi-xun. Application of data mining technology in analysis of marine traffic characteristics[D]. Xiamen: Jimei University, 2011. (in Chinese).
    [2] 郑滨, 陈锦标, 夏少生, 等. 基于数据挖掘的海上交通流数据特征分析[J]. 中国航海, 2009, 32 (1): 60-63, 90. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH200901013.htm

    ZHENG Bin, CHEN Jin-biao, XIA Shao-sheng, et al. Analysis of marine traffic flow characteristics based on data mining[J]. Navigation of China, 2009, 32 (1): 60-63, 90. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH200901013.htm
    [3] RHODES B J, BOMBERGER N A, ZANDIPOUR M. Probabilistic associative learning of ship motion patterns at multiple spatial scales for maritime situation awareness[C]∥IEEE. 10th International Conference on Information Fusion. New York: IEEE, 2007: 1-8.
    [4] 孟范立. 利用AIS数据挖掘建立船舶到达规律模型[J]. 舰船科学技术, 2016, 38 (5A): 28-30. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201610011.htm

    MENG Fan-li. The use of AIS data mining to establish the ship arrives law model[J]. Ship Science and Technology, 2016, 38 (5A): 28-30. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201610011.htm
    [5] PALLOTTA G, VESPE M, BRYAN K. Vessel pattern knowledge discovery from AIS data: a framework for anomaly detection and route prediction[J]. Entropy, 2013, 15 (6): 2218-2245.
    [6] PAN Jia-cai, JIANG Qing-shan, HU Jin-xing, et al. An AISdata visualization model for assessing maritime traffic situation and its applications[J]. Procedia Engineering, 2012, 29: 365-369. doi: 10.1016/j.proeng.2011.12.724
    [7] TU En-mei, ZHANG Guang-hao, RACHMAWATI L, et al. Exploiting AIS data for intelligent maritime navigation: a comprehensive survey from data to methodology[J]. IEEETransactions on Intelligent Transportation Systems, 2018, 19 (5): 1559-1582. doi: 10.1109/TITS.2017.2724551
    [8] GOLDSWORTHY B. Spatial and temporal allocation of ship exhaust emissions in Australian coastal waters using AISdata: analysis and treatment of data gaps[J]. Atmospheric Environment, 2017, 163: 77-86. doi: 10.1016/j.atmosenv.2017.05.028
    [9] HANSEN G M, JENSEN T K, LEHN-SCHI∅LER T, et al. Empirical ship domain based on AIS data[J]. Journal of Navigation, 2013, 66 (6): 931-940. doi: 10.1017/S0373463313000489
    [10] SU Hai-bin, LIU Hong-xing, WU Qiu-sheng. Prediction of water depth from multispectral satellite imagery-the regression kriging alternative[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12 (12): 2511-2515. doi: 10.1109/LGRS.2015.2489678
    [11] YOUNIS B A, SOUSA V, MEIRELES I. Prediction of the asymptotic water depth in rough compound channels[J]. Journal of Irrigation and Drainage Engineering, 2009, 135 (2): 231-234. doi: 10.1061/(ASCE)0733-9437(2009)135:2(231)
    [12] KISI O, SHIRI J. Wavelet and neuro-fuzzy conjunction model for predicting water table depth fluctuations[J]. Hydrology Research, 2012, 43 (3): 286-300. doi: 10.2166/nh.2012.104b
    [13] 侯朋, 许文海, 王俊生, 等. 基于双基地声纳的港口航道水深实时监测系统[J]. 仪器仪表学报, 2009, 30 (10): 2155-2160. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB200910025.htm

    HOU Peng, XU Wen-hai, WANG Jun-sheng, et al. Realtime monitoring system of water depth based on bistatic sonar in harbor channel[J]. Chinese Journal of Scientific Instrument, 2009, 30 (10): 2155-2160. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB200910025.htm
    [14] 吴建华, 李红祥, 文元桥. 航道水深实时监控系统的原理及实现方法[J]. 船海工程, 2009, 38 (3): 153-156. https://www.cnki.com.cn/Article/CJFDTOTAL-WHZC200903042.htm

    WU Jian-hua, LI Hong-xiang, WEN Yuan-qiao. The principal and accomplishing method of real-time supervise system of channel depth[J]. Ship and Ocean Engineering, 2009, 38 (3): 153-156. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WHZC200903042.htm
    [15] 卫桂荣, 杨春. 船舶AIS数据错误检测方法[J]. 中国航海, 2016, 39 (4): 11-14. doi: 10.3969/j.issn.1000-4653.2016.04.003

    WEI Gui-rong, YANG Chun. Detection of AIS data error[J]. Navigation of China, 2016, 39 (4): 11-14. (in Chinese). doi: 10.3969/j.issn.1000-4653.2016.04.003
    [16] 熊木地, 朱四印, 李禄, 等. 通航船舶吃水实时检测系统数据处理方法研究[J]. 仪器仪表学报, 2012, 33 (1): 173-180. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201201026.htm

    XIONG Mu-di, ZHU Si-yin, LI Lu, et al. Research on data processing method of real-time detection system for dynamic ship draft[J]. Chinese Journal of Scientific Instrument, 2012, 33 (1): 173-180. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201201026.htm
    [17] ADLER J, PARMRYD I. Quantifying colocalization by correlation: the Pearson correlation coefficient is superior to the Mander's overlap coefficient[J]. Journal of the International Society for Advancement of Cytometry, 2010 (77A): 733-742.
    [18] SAAD Z S, GLEN D R, CHEN Gang, et al. A new method for improving functional-to-structural MRI alignment using local Pearson correlation[J]. Neuroimage, 2009, 44 (3): 839-848. doi: 10.1016/j.neuroimage.2008.09.037
    [19] DAVIS A M, PEARSON R G, KNEIPP I J, et al. Spatiotemporal variability and environmental determinants of invertebrate assemblage structure in an Australian dry-tropical river[J]. Freshwater Science, 2015, 34 (2): 634-647. doi: 10.1086/681303
    [20] 陈功平, 王红. 改进Pearson相关系数的个性化推荐算法[J]. 山东农业大学学报: 自然科学版, 2016, 47 (6): 940-944. doi: 10.3969/j.issn.1000-2324.2016.06.026

    CHEN Gong-ping, WANG Hong. A personalized recommendation algorithm on improving Pearson correlation coefficient[J]. Journal of Shandong Agricultural University: Natural Science Edition, 2016, 47 (6): 940-944. (in Chinese). doi: 10.3969/j.issn.1000-2324.2016.06.026
    [21] JIA Wei-kuan, ZHAO De-an, SHEN Tian, et al. An optimized classification algorithm by BP neural network based on PLS and HCA[J]. Applied Intelligence, 2015, 43 (1): 176-191. doi: 10.1007/s10489-014-0618-x
    [22] CHENG Cheng, CHENG Xiao-sheng, DAI Ning, et al. Prediction of facial deformation after complete denture prosthesis using BP neural network[J]. Computers in Biology Medicine, 2015, 66: 103-112. doi: 10.1016/j.compbiomed.2015.08.018
    [23] LI Jing-song, TIAN Yu, LIU Yan-feng, et al. Applying a BPneural network model to predict the length of hospital stay[J]. Lecture Notes in Computer Science, 2013, 7798: 18-29.
    [24] 邢晓敏, 刘洪涛, 丁震宇, 等. 基于BP神经网络的高精度基波频率检测方法研究[J]. 东北电力大学学报, 2015, 35 (1): 42-45. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDL201501008.htm

    XING Xiao-min, LIU Hong-tao, DING Zhen-yu, et al. Research on high precision of fundamental frequency detection method based on BP neural network[J]. Journal of Northeast Dianli University, 2015, 35 (1): 42-45. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DBDL201501008.htm
    [25] FREEDEN W. On spherical spline interpolation and approximation[J]. Mathematical Methods in the Applied Sciences, 1981, 3 (4): 551-575.
    [26] YI Long-tao, LIU Zhi-guo, WANG Kai, et al. A new background subtraction method for energy dispersive X-ray fluorescence spectra using a cubic spline interpolation[J]. Nuclear Instruments and Methods in Physics Research, 2015, 775: 12-14.
    [27] MARIANI M C, BASU K. Spline interpolation techniques applied to the study of geophysical data[J]. Physica A: Statistical Mechanics and its Applications, 2015, 428: 68-79.
    [28] 余翔宇, 孙洪, 余志雄. 改进的二维点集凸包快速求取方法[J]. 武汉理工大学学报, 2005, 27 (10): 81-83, 92. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY200510023.htm

    YU Xiang-yu, SUN Hong, YU Zhi-xiong. An improved algorithm to determine the convex hull of 2-D points set[J]. Journal of Wuhan University of Technology, 2005, 27 (10): 81-83, 92. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY200510023.htm
  • 加载中
图(17) / 表(7)
计量
  • 文章访问数:  743
  • HTML全文浏览量:  279
  • PDF下载量:  700
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-15
  • 刊出日期:  2018-08-25

目录

    /

    返回文章
    返回