留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

道面摩阻不平衡对飞机着陆滑行参数影响

蔡靖 张恒 李岳 孙瑞强

蔡靖, 张恒, 李岳, 孙瑞强. 道面摩阻不平衡对飞机着陆滑行参数影响[J]. 交通运输工程学报, 2018, 18(5): 12-24. doi: 10.19818/j.cnki.1671-1637.2018.05.002
引用本文: 蔡靖, 张恒, 李岳, 孙瑞强. 道面摩阻不平衡对飞机着陆滑行参数影响[J]. 交通运输工程学报, 2018, 18(5): 12-24. doi: 10.19818/j.cnki.1671-1637.2018.05.002
CAI Jing, ZHANG Heng, LI Yue, SUN Rui-qiang. Influence of unbalanced pavement friction on landing taxiing parameters of aircraft[J]. Journal of Traffic and Transportation Engineering, 2018, 18(5): 12-24. doi: 10.19818/j.cnki.1671-1637.2018.05.002
Citation: CAI Jing, ZHANG Heng, LI Yue, SUN Rui-qiang. Influence of unbalanced pavement friction on landing taxiing parameters of aircraft[J]. Journal of Traffic and Transportation Engineering, 2018, 18(5): 12-24. doi: 10.19818/j.cnki.1671-1637.2018.05.002

道面摩阻不平衡对飞机着陆滑行参数影响

doi: 10.19818/j.cnki.1671-1637.2018.05.002
基金项目: 

国家自然科学基金项目 51508559

中国民航大学省部级科研机构开放基金项目 KFJJ2014JCGC07

详细信息
    作者简介:

    蔡靖(1975-), 女, 河北滦州人, 中国民航大学副教授, 工学博士, 主要从事机场道面结构性能及其监测技术研究

  • 中图分类号: U416.2

Influence of unbalanced pavement friction on landing taxiing parameters of aircraft

More Information
  • 摘要: 从运动学原理入手建立飞机着陆滑行力学模型, 引入道面摩阻不平衡度, 基于实测道面摩擦因数及其摩阻不平衡度分析飞机着陆减速和匀速滑行阶段的偏航角与偏航距离的变化趋势, 并设计模型试验分析湿滑道面摩阻不平衡下飞机着陆滑行参数变化规律。研究结果表明: 当跑道中心线两侧摩阻不平衡时, 机体产生绕竖轴扭矩, 导致飞机产生偏航角和偏航距离; 摩阻不平衡度的增大导致飞机偏航角与偏航距离增大, 摩阻不平衡度由0.03增加到0.38时, 偏航角增大4倍, 偏航距离增大1倍; 减小中心线两侧的摩阻不平衡度可以有效降低飞机偏出跑道概率; 滑移率对偏航角和偏航距离影响较小; 道面摩擦因数降低, 减速滑行距离增大, 基本呈线性变化; 随着跑道接地带摩阻不平衡度增大, 飞机所产生的偏航角呈直线增长, 当摩阻不平衡度达0.165时, 偏航角达1.2°; 随着跑道接地带摩阻不平衡度增大, 偏航距离也增大, 由于减速段所产生的偏航角, 加之匀速段滑行距离较长, 70%以上的偏航距离是在匀速阶段发生的; 湿滑道面下随着中心线两侧的水膜厚度差增大, 偏航角和偏航距离均增大, 水膜厚度差从0.05mm增加到2.50mm, 偏航角增大6倍, 偏航距离增大5倍。可见, 在接地带保证飞机主起落架两侧摩阻平衡, 有利于着陆减速过程飞机偏航角的控制。

     

  • 图  1  飞机二维运动受力

    Figure  1.  Aircraft's two dimensional motion force

    图  2  摩阻不平衡度对滑行参数影响

    Figure  2.  Influence of unbalanced friction degree on taxiing parameters

    图  3  某机场跑道

    Figure  3.  Runway of an airport

    图  4  干燥道面摩擦因数

    Figure  4.  Friction coefficients of dry pavement

    图  5  积水道面摩擦因数

    Figure  5.  Friction coefficients of water pavement

    图  6  积雪道面摩擦因数

    Figure  6.  Friction coefficients of snowy pavement

    图  7  减速段滑行距离

    Figure  7.  Taxiing distance at deceleration section

    图  8  减速段偏航角

    Figure  8.  Yaw angle at deceleration section

    图  9  减速段偏航距离

    Figure  9.  Yaw distance at deceleration section

    图  10  匀速段偏航距离

    Figure  10.  Yaw distance at uniform section

    图  11  着陆滑行全段偏航角

    Figure  11.  Yaw angle during whole landing taxiing section

    图  12  着陆滑行全段偏航距离

    Figure  12.  Yaw distance during whole landing taxiing section

    图  13  模型试验

    Figure  13.  Model test

    图  14  各工况下的偏航角与偏航距离

    Figure  14.  Yaw angles and yaw distances under different conditions

    表  1  跑道中心线两侧道面条件

    Table  1.   Pavement conditions at two sides of runway

    下载: 导出CSV

    表  2  飞机着陆滑行参数

    Table  2.   Aircraft landing taxiing parameters

    下载: 导出CSV

    表  3  不同滑移率下的偏航角

    Table  3.   Yaw angles at different slip ratios  (°)

    下载: 导出CSV

    表  4  不同滑移率下的偏航距离

    Table  4.   Yaw distances at different slip ratios m

    下载: 导出CSV

    表  5  干燥道面摩擦因数与摩阻不平衡度

    Table  5.   Friction coefficients and unbalanced friction degrees of dry pavement

    下载: 导出CSV

    表  6  积水道面摩擦因数与摩阻不平衡度

    Table  6.   Friction coefficients and unbalanced friction degrees of water pavement

    下载: 导出CSV

    表  7  积雪道面摩擦因数与摩阻不平衡度

    Table  7.   Friction coefficients and unbalanced friction degrees of snowy pavement

    下载: 导出CSV

    表  8  跑道X端减速段滑行参数

    Table  8.   Taxiing parameters at deceleration section of X end

    下载: 导出CSV

    表  9  跑道Y端减速段滑行参数

    Table  9.   Taxiing parameters at deceleration section of Y end

    下载: 导出CSV

    表  10  跑道X端匀速段滑行参数

    Table  10.   Taxiing parameters at uniform section of X end

    下载: 导出CSV

    表  11  跑道Y端匀速段滑行参数

    Table  11.   Taxiing parameters at uniform section of Y end

    下载: 导出CSV

    表  12  着陆滑行参数

    Table  12.   Parameters of landing taxiing

    下载: 导出CSV

    表  13  亚克力板摩擦因数

    Table  13.   Friction coefficients of acrylic plate

    下载: 导出CSV

    表  14  水膜厚度与摩阻不平衡度

    Table  14.   Water film thicknesses and unbalanced friction degrees

    下载: 导出CSV

    表  15  各工况下试验结果

    Table  15.   Test results under different conditions

    下载: 导出CSV

    表  16  各工况下试验结果(还原)

    Table  16.   Test results under different conditions (reduction)

    下载: 导出CSV

    表  17  试验结果对比

    Table  17.   Comparison of test results

    下载: 导出CSV
  • [1] 赵安家, 孙丽莹, 孟哲理. 飞机轮胎滑水与预防措施研究综述[J]. 飞机设计, 2015, 35 (5): 46-51, 80. https://www.cnki.com.cn/Article/CJFDTOTAL-FJSJ201505010.htm

    ZHAO An-jia, SUN Li-ying, MENG Zhe-li. A search for mechanism and preventability measure of the aircraft tire'hydroplaning[J]. Aircraft Design, 2015, 35 (5): 46-51, 80. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FJSJ201505010.htm
    [2] 霍志勤, 茹毅, 韩松臣. 民航运输航空器着陆阶段偏出跑道事件分析模型[J]. 西南交通大学学报, 2012, 47 (5): 895-900. doi: 10.3969/j.issn.0258-2724.2012.05.026

    HUO Zhi-qin, RU Yi, HAN Song-chen. Analysis model of transport aircraft veering off runway during landing phase[J]. Journal of Southwest Jiaotong University, 2012, 47 (5): 895-900. (in Chinese). doi: 10.3969/j.issn.0258-2724.2012.05.026
    [3] 陆正. 基于Bow-tie模型的民机着陆阶段跑道偏离风险研究[D]. 天津: 中国民航大学, 2015.

    LU Zheng. Civil aircraft landing excursion risk analysis based on bow-tie model[D]. Tianjin: Civil Aviation University of China, 2015. (in Chinese).
    [4] 张明. 飞机地面动力学若干关键技术研究[D]. 南京: 南京航空航天大学, 2009.

    ZHANG Ming. Research on some key technologies of aircraft ground dynamics[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009. (in Chinese).
    [5] 宗一鸣. 湿滑道面条件下轮胎力学行为与飞机着陆安全问题研究[D]. 天津: 中国民航大学, 2017.

    ZONG Yi-ming. Study on the mechanical properties of aircraft tire and safety problem in landing on wet-pavement[D]. Tianjin: Civil Aviation University of China, 2017. (in Chinese).
    [6] 蔡靖, 李岳, 宗一鸣, 等. 湿滑跑道飞机着陆轮胎-水膜-道面相互作用[J]. 北京航空航天大学学报, 2017, 43 (12): 2382-2391. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201712004.htm

    CAI Jing, LI Yue, ZONG Yi-ming, et al. Aircraft tire-water film-pavement interaction on wet pavement in landing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43 (12): 2382-2391. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201712004.htm
    [7] 孙泽鹏. 多轮起落架飞机地面操作特性分析[D]. 南京: 南京航空航天大学, 2009.

    SUN Ze-peng. Analysis of ground handling characteristic of aircraft with multi-wheels landing gear[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009. (in Chinese).
    [8] 晋萍. 基于ADAMS软件的飞机滑行动力响应仿真分析[J]. 机械工程与自动化, 2007 (2): 1-3. doi: 10.3969/j.issn.1672-6413.2007.02.001

    JIN Ping. Analysis on the aerodynamic response based on ADAMS[J]. Mechanical Engineering and Automation, 2007 (2): 1-3. (in Chinese). doi: 10.3969/j.issn.1672-6413.2007.02.001
    [9] 董健康, 王洁宁, 王安国, 等. 飞机地面滑行行为计算方法[J]. 中国民航大学学报, 2012, 30 (6): 21-24, 33. doi: 10.3969/j.issn.1674-5590.2012.06.006

    DONG Jian-kang, WANG Jie-ning, WANG An-guo, et al. Aircraft ground taxiing behavior calculation method[J]. Journal of Civil Aviation University of China, 2012, 30 (6): 21-24, 33. (in Chinese). doi: 10.3969/j.issn.1674-5590.2012.06.006
    [10] 张立彬, 苏胜昔. 关于飞机侧风着陆问题的分析[J]. 飞行力学, 2002, 20 (4): 51-55. doi: 10.3969/j.issn.1002-0853.2002.04.013

    ZHANG Li-bin, SU Sheng-xi. Analysis to the problem of airplane's cross-wind landing[J]. Flight Dynamics, 2002, 20 (4): 51-55. (in Chinese). doi: 10.3969/j.issn.1002-0853.2002.04.013
    [11] HORNE W B. Wet runways[R]. Washington DC: National Aeronautics and Space Administration, 1975.
    [12] PASINDU H R, FWA T F, ONG G P. Computation of aircraft braking distances[J]. Transportation Research Record, 2011 (2214): 126-135.
    [13] KUMAR S S, ANUPAM K, SCARPAS T, et al. Study of hydroplaning risk on rolling and sliding passenger car[J]. Procedia—Social and Behavioral Sciences, 2012 (53): 1020-1028.
    [14] 杨军, 王昊鹏, 吴琦. 潮湿沥青路面抗滑性能数值模拟[J]. 长安大学学报: 自然科学版, 2016, 36 (3): 25-32. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201603005.htm

    YANG Jun, WANG Hao-peng, WU Qi. Numerical simulation on skid resistance property of wet asphalt pavement[J]. Journal of Chang'an University: Natural Science Edition, 2016, 36 (3): 25-32. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201603005.htm
    [15] 陈久锐. 复杂条件下起飞着陆中的定量安全裕度研究[D]. 成都: 中国民用航空飞行学院, 2009.

    CHEN Jiu-rui. Research on safety margins during take off and landing phases under complicated conditions[D]. Chengdu: Civil Aviation Flight University of China, 2009. (in Chinese).
    [16] 赵鸿铎, 伍梦竹, 吴世涛. 沥青道面摩擦系数随水膜厚度的变化规律[J]. 中国民航大学学报, 2015, 33 (2): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMH201502011.htm

    ZHAO Hong-duo, WU Meng-zhu, WU Shi-tao. Variation of asphalt pavement friction coefficient with change of water film thickness[J]. Journal of Civil Aviation University of China, 2015, 33 (2): 47-52. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMH201502011.htm
    [17] 臧孟炎, 段扶摇, 周涛, 等. 复杂花纹轮胎湿滑路面制动距离FEM仿真分析及评价[J]. 中国机械工程, 2013, 24 (16): 2257-2261. doi: 10.3969/j.issn.1004-132X.2013.16.024

    ZANG Meng-yan, DUAN Fu-yao, ZHOU Tao, et al. FEM simulation analysis and estimation on wet-road braking distance of complex-patterned tire[J]. China Mechanical Engineering, 2013, 24 (16): 2257-2261. (in Chinese). doi: 10.3969/j.issn.1004-132X.2013.16.024
    [18] 吴华伟, 陈特放, 胡春凯, 等. 多轮飞机滑水保护[J]. 民用飞机设计与研究, 2011 (4): 62-65. https://www.cnki.com.cn/Article/CJFDTOTAL-MYFJ201104020.htm

    WU Hua-wei, CHEN Te-fang, HU Chun-kai, et al. The hydroplaning protection of the multi-wheel aircraft[J]. Civil Aircraft Design and Research, 2011 (4): 62-65. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MYFJ201104020.htm
    [19] 牟丹. 四点起落架飞机着陆及操纵特性分析[D]. 南京: 南京航空航天大学, 2016.

    MU Dan. Analysis of landing and handling characteristic of aircraft with four wheels[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016. (in Chinese).
    [20] 陈高军. 湿滑路面子午线轮胎制动性能有限元仿真研究[D]. 广州: 华南理工大学, 2012.

    CHEN Gao-jun. Finite element investigation on wet-road braking performance of radial tire[D]. Guangzhou: South China University of Technology, 2012. (in Chinese).
    [21] 柯文豪. 潮湿路面滑水现象及抗滑力模型[J]. 中外公路, 2010, 30 (1): 82-86. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201001023.htm

    KE Wen-hao. Hydroplaning phenomenon and anti sliding force model of wet pavement[J]. Journal of China and Foreign Highway, 2010, 30 (1): 82-86. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201001023.htm
    [22] HORNE W B, DREHER R C. Phenomena of pneumatic tire hydroplaning[R]. Washington DC: National Aeronautics and Space Administration, 1963.
    [23] 史保华, 李光远, 邵斌, 等. 沥青跑道抗滑性能分析[J]. 交通运输工程学报, 2007, 7 (5): 58-62. http://transport.chd.edu.cn/article/id/200705013

    SHI Bao-hua, LI Guang-yuan, SHAO Bin, et al. Anti-skid property analysis of asphalt runway[J]. Journal of Traffic and Transportation Engineering, 2007, 7 (5): 58-62. (in Chinese). http://transport.chd.edu.cn/article/id/200705013
    [24] WANG Y S, WU J, SU B L. Analysis on the hydroplaning of aircraft tire[J]. Advanced Materials Research, 2010, 87/88: 1-6.
    [25] WRAY G A, EHRLICH I R. A systematic experimental investigation of significant parameters affecting model tire hydroplaning[R]. Washington DC: National Aeronautics and Space Administration, 1973.
    [26] OH C W, KIM T W, JEONG H Y, et al. Hydroplaning simulation for a straight-grooved tire by using FDM, FEM and an asymptotic method[J]. Journal of Mechanical Science and Technology, 2008, 22 (1): 34-40.
    [27] SRIRANGAM S K, ANUPAM K, SCARPAS A, et al. Safety aspects of wet asphalt pavement surfaces through field and numerical modeling investigations[J]. Transportation Research Record, 2014 (2446): 37-51.
    [28] ONG G P, FWA T F. Prediction of wet-pavement skid resistance and hydroplaning potential[J]. Transportation Research Record, 2007 (2005): 160-171.
    [29] 蔡靖, 王永繁, 李岳. 基于轮组效应湿滑跑道飞机轮胎-水膜相互作用研究[J]. 科学技术与工程, 2015, 15 (11): 116-124. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201511021.htm

    CAI Jing, WANG Yong-fan, LI Yue. Research on aircraft tyres-water film interaction on the wet pavement based on wheel set of aircrafts[J]. Science Technology and Engineering, 2015, 15 (11): 116-124. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201511021.htm
    [30] 柯文豪. 水泥混凝土路面抗滑性能及评价模型研究[D]. 西安: 长安大学, 2010.

    KE Wen-hao. Research on the cement concrete pavement anti-sliding performance and evaluation model[D]. Xi'an: Chang'an University, 2010. (in Chinese).
    [31] LIN Lin, WANG K C P, LI Q J, et al. Automated runway groove measurement and evaluation[J]. KSCE Journal of Civil Engineering, 2017, 21 (3): 758-765.
  • 加载中
图(14) / 表(17)
计量
  • 文章访问数:  540
  • HTML全文浏览量:  94
  • PDF下载量:  590
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-21
  • 刊出日期:  2018-10-25

目录

    /

    返回文章
    返回