留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无缝化改造的空心板桥受力性能

许震 陈宝春 黄福云 庄一舟 黄卿维

许震, 陈宝春, 黄福云, 庄一舟, 黄卿维. 无缝化改造的空心板桥受力性能[J]. 交通运输工程学报, 2018, 18(5): 66-76. doi: 10.19818/j.cnki.1671-1637.2018.05.007
引用本文: 许震, 陈宝春, 黄福云, 庄一舟, 黄卿维. 无缝化改造的空心板桥受力性能[J]. 交通运输工程学报, 2018, 18(5): 66-76. doi: 10.19818/j.cnki.1671-1637.2018.05.007
XU Zhen, CHEN Bao-chun, HUANG Fu-yun, ZHUANG Yi-zhou, HUANG Qing-wei. Mechanical performance of jointless retrofitted bridge with hollow-slabs[J]. Journal of Traffic and Transportation Engineering, 2018, 18(5): 66-76. doi: 10.19818/j.cnki.1671-1637.2018.05.007
Citation: XU Zhen, CHEN Bao-chun, HUANG Fu-yun, ZHUANG Yi-zhou, HUANG Qing-wei. Mechanical performance of jointless retrofitted bridge with hollow-slabs[J]. Journal of Traffic and Transportation Engineering, 2018, 18(5): 66-76. doi: 10.19818/j.cnki.1671-1637.2018.05.007

无缝化改造的空心板桥受力性能

doi: 10.19818/j.cnki.1671-1637.2018.05.007
基金项目: 

国家自然科学基金项目 51578161

国家自然科学基金项目 51278126

详细信息
    作者简介:

    许震(1975-), 男, 安徽无为人, 盐城工学院讲师, 福州大学工学博士研究生, 从事无缝桥与组合结构研究

    陈宝春(1958-), 男, 福建罗源人, 福州大学教授, 工学博士

  • 中图分类号: U448.212

Mechanical performance of jointless retrofitted bridge with hollow-slabs

More Information
  • 摘要: 对某多跨空心板桥进行了无缝化改造, 简支板改为双排支座连续板, 桥台改为延伸桥面板桥台, 取消了全桥的伸缩装置; 测试了实桥静动载, 研究了无缝化改造后的多跨空心板桥受力性能; 应用有限元模型, 计算了结构受力、承载力、引板受力及单、双排支座对结构力学性能的影响。测试结果表明: 无缝化改造后的桥梁实测基频为8.60Hz, 高于改造前的5.37Hz, 4种车速下实测冲击系数最大值为1.11, 小于《公路桥涵设计通用规范》 (JTG D60—2004) 的计算值1.36, 应变与挠度校验系数均小于0.95, 因此, 无缝化改造提高了全桥整体性能, 改善了行车条件。有限元分析结果表明: 无缝化改造后桥梁基频的计算值为8.48Hz, 实测基频与计算基频比值为1.01, 因此, 改造后桥梁功能状况良好; 跨中截面的正弯矩明显降低, 第2跨跨中降幅最大, 达15.6%, 但内支座处出现了负弯矩, 同时剪力增大, 最大增幅为18.2%;跨中挠度明显降低, 以第2、3跨降幅最大, 达35.5%, 桥梁整体刚度明显提高; 最大裂缝宽度计算值为0.15mm, 小于《公路钢筋混凝土及预应力混凝土桥涵设计规范》 (JTG D62—2004) (简称《桥规》) 规定的0.20mm, 承载力、挠度和裂缝宽度验算均满足《桥规》要求; 支座排数对上部结构的受力影响较小, 采用双排支座是可行的; 引板与地基的摩擦因数对引板和铺装层轴向力影响较大, 对弯矩影响较小; 引板和铺装层最大拉应力分别为0.87、1.25MPa, 满足设计强度要求。

     

  • 图  1  主梁改造

    Figure  1.  Main girder retrofitting

    图  2  桥台改造

    Figure  2.  Abutment retrofitting

    图  3  桥梁总体布置(单位: cm)

    Figure  3.  General layout of bridge (unit: cm)

    图  4  成桥

    Figure  4.  Completed bridge

    图  5  回弹试验

    Figure  5.  Rebound test

    图  6  行车荷载试验

    Figure  6.  Vehicle load test

    图  7  试验车型

    Figure  7.  Testing vehicle type

    图  8  车辆横向布置(单位: cm)

    Figure  8.  Lateral arrangements of vehicles (unit: cm)

    图  9  测试断面(单位: cm)

    Figure  9.  Test sections (unit: cm)

    图  10  S1断面应变

    Figure  10.  Strains of section S1

    图  11  S3断面应变

    Figure  11.  Strains of section S3

    图  12  工况5时S2断面应变

    Figure  12.  Strains of section S2under case 5

    图  13  引板布置(单位: cm)

    Figure  13.  Arrangemnet view of approach slab (unit: cm)

    图  14  引板有限元模型

    Figure  14.  FEM of approach slab

    图  15  摩擦因数与铺装层Ⅱ-Ⅱ截面内力之间关系

    Figure  15.  Relationships between friction coefficient and internal forces of pavement sectionⅡ-Ⅱ

    图  16  摩擦因数与引板Ⅱ-Ⅱ截面内力之间关系

    Figure  16.  Relationships between friction coefficient and internal forces of approach slab sectionⅡ-Ⅱ

    图  17  连接筋、引板与铺装层最大拉应力

    Figure  17.  Max tensile stresses of link steel bar, approach slab and pavement

    表  1  试验工况与荷载效率

    Table  1.   Test cases and load efficiencies

    下载: 导出CSV

    表  2  各工况挠度校验结果

    Table  2.   Deflection verification results under various cases

    下载: 导出CSV

    表  3  温度基数

    Table  3.   Temperature cardinalities

    下载: 导出CSV

    表  4  无缝化改造前后最不利弯矩对比

    Table  4.   Comparison of most unfavorable bending moments before and after jointless retrofit

    下载: 导出CSV

    表  5  无缝化改造前后最不利剪力对比

    Table  5.   Comparison of most unfavorable shear forces before and after jointless retrofit

    下载: 导出CSV

    表  6  修正系数

    Table  6.   Modification coefficients

    下载: 导出CSV

    表  7  极限承载力

    Table  7.   Ultimate bearing capacities

    下载: 导出CSV

    表  8  无缝化改造前后跨中挠度对比

    Table  8.   Comparison of mid-span deflections before and after jointless retrofit

    下载: 导出CSV

    表  9  单、双排支承最不利弯矩对比

    Table  9.   Comparison of most unfavorable bending moments under single and double row supports

    下载: 导出CSV

    表  10  单、双排支承最不利剪力对比

    Table  10.   Comparison of most unfavorable shear forces under single and double row supports

    下载: 导出CSV

    表  11  计算参数

    Table  11.   Computation parameters

    下载: 导出CSV
  • [1] ALA N, AZIZINAMINI A. Experimental study of seamless bridge transition system for U. S. practice[J]. Journal of Bridge Engineering, 2016, 21 (2): 04015046-1-13. doi: 10.1061/(ASCE)BE.1943-5592.0000749
    [2] SABER A, ROBERTS F, TOUPS J, et al. Effectiveness of continuity diaphragm for skewed continuous prestressed concrete girder bridges[J]. PCI Journal, 2007, 52 (2): 108-114.
    [3] ATTANAYAKEU B. Macromechanical modeling of precast orthotropic bridge superstructure systems[D]. Detroit: Wayne State University, 2006.
    [4] FU C C, PAN Z F, AHMED M S. Transverse posttensioning design of adjacent precast solid multibeam bridges[J]. Journal of Performance of Constructed Facilities, 2011, 25 (3): 223-230. doi: 10.1061/(ASCE)CF.1943-5509.0000147
    [5] THIPPESWAMY H K, GANGARAO H V S, FRANCO J M. Performance evaluation of jointless bridges[J]. Journal of Bridge Engineering, 2002, 7 (5): 276-289. doi: 10.1061/(ASCE)1084-0702(2002)7:5(276)
    [6] 胡大琳, 王天利, 陈峰, 等. 半整体式桥台无伸缩缝桥静力分析[J]. 交通运输工程学报, 2006, 6 (1): 52-62. doi: 10.3321/j.issn:1671-1637.2006.01.011

    HU Da-lin, WANG Tian-li, CHEN Feng, et al. Static analysis of semi-integral abutment jointless bridge[J]. Journal of Traffic and Transportation Engineering, 2006, 6 (1): 52-62. (in Chinese). doi: 10.3321/j.issn:1671-1637.2006.01.011
    [7] HOPPE E, WEAKLEY K, THOMPSON P. Jointless bridge design at the Virginia Department of Transportation[J]. Transportation Research Procedia, 2016, 14: 3943-3952. doi: 10.1016/j.trpro.2016.05.486
    [8] MARURI R F, PETRO S H. Integral abutments and jointless bridges (IAJB) 2004survey summary[R]. Baltimore: University of Maryland, 2004.
    [9] HUSAIN I, BAGNARIOL D. Performance of integral abutment bridges[R]. Toronto: Ministry of Transportation Ontario, 2000.
    [10] KAUFMANN W, ALVAREZ M. Swiss federal roads office guidelines for integral bridges[J]. Journal of the International Association for Bridge and Structural Engineering, 2011, 21 (2): 189-194.
    [11] KEROKOSKI O. Soil-structure interaction of long jointless bridges with integral abutments[D]. Tampere: Tampere University of Technology, 2006.
    [12] WHITE H, PÉTURSSON H, COLLIN P. Integral abutment bridges: the European way[J]. Practice Periodical on Structural Design and Construction, 2010, 15 (3): 201-208. doi: 10.1061/(ASCE)SC.1943-5576.0000053
    [13] 洪锦祥, 彭大文. 桩基础的整体式桥台桥梁受力性能研究[J]. 中国公路学报, 2002, 15 (4): 43-48. doi: 10.3321/j.issn:1001-7372.2002.04.013

    HONG Jin-xiang, PENG Da-wen. Research on the loaded property of integral abutment bridges with flexible piles[J]. China Journal of Highway and Transport, 2002, 15 (4): 43-48. (in Chinese). doi: 10.3321/j.issn:1001-7372.2002.04.013
    [14] 彭大文, 陈晓冬, 袁燕. 整体式桥台桥梁台后土压力的季节性变化研究[J]. 岩土工程学报, 2003, 25 (2): 135-139. doi: 10.3321/j.issn:1000-4548.2003.02.002

    PENG Da-wen, CHEN Xiao-dong, YUAN Yan. Study on seasonal fluctuation of earth pressure behind the abutment[J]. Chinese Journal of Geotechnical Engineering, 2003, 25 (2): 135-139. (in Chinese). doi: 10.3321/j.issn:1000-4548.2003.02.002
    [15] 金晓勤, 邵旭东. 半整体式全无缝桥梁研究[J]. 土木工程学报, 2009, 42 (9): 68-73. doi: 10.3321/j.issn:1000-131X.2009.09.010

    JIN Xiao-qin, SHAO Xu-dong. A study of full jointless bridge-approach system with semi-integral abutment[J]. China Civil Engineering Journal, 2009, 42 (9): 68-73. (in Chinese). doi: 10.3321/j.issn:1000-131X.2009.09.010
    [16] 徐明. 整体式桥台后粗粒土填料力学特性的试验研究[J]. 土木工程学报, 2010, 43 (5): 136-141. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201005022.htm

    XU Ming. Laboratory study of the behavior of granular soils behind integral bridge abutments[J]. China Civil Engineering Journal, 2010, 43 (5): 136-141. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201005022.htm
    [17] 于天来, 周田, 姜立东, 等. 升温作用下整体桥台台后土压力计算方法的探讨[J]. 桥梁建设, 2010 (1): 29-31, 35. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201001009.htm

    YU Tian-lai, ZHOU Tian, JIANG Li-dong, et al. Study of calculating methods for earth pressure behind abutment of integral abutment bridge under action of rising temperatures[J]. Bridge Construction, 2010 (1): 29-31, 35. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201001009.htm
    [18] ALA N, AZIZINAMINI A. Proposed design provisions for a seamless bridge system: cases of flexible and jointed pavements[J]. Journal of Bridge Engineering, 2016, 21 (2): 04015045-1-13. doi: 10.1061/(ASCE)BE.1943-5592.0000750
    [19] JAYARAMAN R. Integral bridge concept applied to rehabilitate an existing bridge and construct a dual-use bridge[C]∥Singapore Concrete Institute. 26th Conference on Our World in Concrete and Structures. Singapore: CI-Premier, 2001: 341-348.
    [20] ZORDAN T, BRISEGHELLA B. Attainment of an integral abutment bridge through the refurbishment of a simply supportedstructure[J]. Journal of the International Association for Bridge and Structural Engineering, 2007, 17 (3): 228-234.
    [21] 项贻强, 张翔, 赵荐, 等. 退役预应力混凝土梁受弯全过程分析及试验研究[J]. 桥梁建设, 2015, 45 (5): 30-35. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201505006.htm

    XIANG Yi-qiang, ZHANG Xiang, ZHAO Jian, et al. Fullrang analysis and experimental study of flexural behavior of PC hollow slab girders out of service[J]. Bridge Construction, 2015, 45 (5): 30-35. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201505006.htm
    [22] 吴庆雄, 陈悦驰, 陈康明. 结合面底部带门式钢筋的铰接空心板破坏模式分析[J]. 交通运输工程学报, 2015, 15 (5): 15-25. doi: 10.3969/j.issn.1671-1637.2015.05.003

    WU Qing-xiong, CHEN Yue-chi, CHEN Kang-ming. Failure mode analysis of hinged voided slab with gate-type steel rebars at bottom of junction surface[J]. Journal of Traffic and Transportation Engineering, 2015, 15 (5): 15-25. (in Chinese). doi: 10.3969/j.issn.1671-1637.2015.05.003
    [23] 胡铁明, 黄承逵, 陈小锋, 等. 简支变连续法加固混凝土梁桥疲劳试验[J]. 中国公路学报, 2010, 23 (5): 76-82. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201005011.htm

    HU Tie-ming, HUANG Cheng-kui, CHEN Xiao-feng, et al. Fatigue experiment of concrete bridges strengthened by simple-supporting to continuous construction method[J]. China Journal of Highway and Transport, 2010, 23 (5): 76-82. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201005011.htm
    [24] 陈小峰, 胡铁明, 黄承逵. 钢纤维自应力混凝土加固梁抗弯疲劳性能试验研究[J]. 建筑结构, 2009, 39 (4): 65-68. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG200904024.htm

    CHEN Xiao-feng, HU Tie-ming, HUANG Cheng-kui. Experimental research on bend fatigue behavior of steel fiber reinforced self-stressing concrete beams[J]. Building Structure, 2009, 39 (4): 65-68. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG200904024.htm
    [25] 靳欣华, 姚启明, 张澎涛. 简支变连续梁法加固多跨T梁桥效应分析[J]. 重庆交通学院学报, 2006, 25 (2): 4-7. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT200602001.htm

    JIN Xin-hua, YAO Qi-ming, ZHANG Peng-tao. Reinforcing effect analysis of converting simply-support into continuous for multi-span T shape free beam bridge[J]. Journal of Chongqing Jiaotong University, 2006, 25 (2): 4-7. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT200602001.htm
    [26] WANG Wen-wei, DAI Jian-guo, HUANG Cheng-kui, et al. Strengthening multiple span simply-supported girder bridges using post-tensioned negative moment connection technique[J]. Engineering Structures, 2011, 33 (2): 663-673.
    [27] 马培培, 陈淮, 陈代海, 等. 既有装配式空心板桥单板抗弯承载力退化分析[J]. 铁道科学与工程学报, 2016, 13 (5): 863-870. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201605011.htm

    MA Pei-pei, CHEN Huai, CHEN Dai-hai, et al. On bearing capacity deterioration of in service prefabricated prestressed concrete hollow slab bridge[J]. Journal of Railway Science and Engineering, 2016, 13 (5): 863-870. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201605011.htm
    [28] 张彬, 朱栋, 徐建炜, 等. 浙江省中小跨径混凝土桥梁整体状况与典型病害研究[J]. 重庆交通大学学报: 自然科学版, 2013, 32 (增1): 742-745, 751. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT2013S1005.htm

    ZHANG Bin, ZHU Dong, XU Jian-wei, et al. Overall situation and typical diseases of medium and small span concrete bridges in Zhejiang Province[J]. Journal of Chongqing Jiaotong University: Natural Science, 2013, 32 (S1): 742-745, 751. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT2013S1005.htm
    [29] 董桔灿, 陈宝春, BRISEGHELLA B, 等. 多跨空心板简支梁桥整体化改造设计[J]. 建筑科学与工程学报, 2015, 32 (5): 73-80. https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG201505012.htm

    DONG Ju-can, CHEN Bao-chun, BRISEGHELLA B, et al. Integral transformation design of multi-span hollow slab simply-supported bridge[J]. Journal of Architecture and Civil Engineering, 2015, 32 (5): 73-80. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG201505012.htm
    [30] 唐玉风, 薛俊青, 张培权, 等. 无缝桥面板式引板滑移材料摩阻系数试验研究[C]∥陆新征. 第26届全国结构工程学术会议论文集(第Ⅱ册). 北京: 工程力学杂志社, 2017: 514-519.

    TANG Yu-feng, XUE Jun-qing, ZHANG Pei-quan, et al. Experiment study on the friction coefficient of the sliding material of the plate-type approach slab for jointless bridges[C]∥LU Xinzheng. Proceedings of the 26th National Conference on Structural Engineering (No. Ⅱ). Beijing: Journal of Engineering Mechanicals, 2017: 514-519. (in Chinese).
  • 加载中
图(17) / 表(11)
计量
  • 文章访问数:  935
  • HTML全文浏览量:  191
  • PDF下载量:  385
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-23
  • 刊出日期:  2018-10-25

目录

    /

    返回文章
    返回