留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轨道综合作业对高速铁路有砟轨道几何不平顺改善效果

木东升 周宇 韩延彬 郑晓峰 邝迪峰

木东升, 周宇, 韩延彬, 郑晓峰, 邝迪峰. 轨道综合作业对高速铁路有砟轨道几何不平顺改善效果[J]. 交通运输工程学报, 2018, 18(5): 90-99. doi: 10.19818/j.cnki.1671-1637.2018.05.009
引用本文: 木东升, 周宇, 韩延彬, 郑晓峰, 邝迪峰. 轨道综合作业对高速铁路有砟轨道几何不平顺改善效果[J]. 交通运输工程学报, 2018, 18(5): 90-99. doi: 10.19818/j.cnki.1671-1637.2018.05.009
MU Dong-sheng, ZHOU Yu, HAN Yan-bin, ZHENG Xiao-feng, KUANG Di-feng. Effect of track comprehensive maintenance on geometry irregularity improvement of ballast track in high-speed railway[J]. Journal of Traffic and Transportation Engineering, 2018, 18(5): 90-99. doi: 10.19818/j.cnki.1671-1637.2018.05.009
Citation: MU Dong-sheng, ZHOU Yu, HAN Yan-bin, ZHENG Xiao-feng, KUANG Di-feng. Effect of track comprehensive maintenance on geometry irregularity improvement of ballast track in high-speed railway[J]. Journal of Traffic and Transportation Engineering, 2018, 18(5): 90-99. doi: 10.19818/j.cnki.1671-1637.2018.05.009

轨道综合作业对高速铁路有砟轨道几何不平顺改善效果

doi: 10.19818/j.cnki.1671-1637.2018.05.009
基金项目: 

国家自然科学基金项目 51678445

国家自然科学基金项目 51878661

道路与铁道工程安全保障省部共建教育部重点实验室开放课题 STKF201715

详细信息
    作者简介:

    木东升(1992-), 男, 安徽阜阳人, 同济大学工学硕士研究生, 从事轨道养护维修技术研究

    周宇(1977-), 男, 山西太原人, 同济大学副教授, 工学博士

  • 中图分类号: U270.11

Effect of track comprehensive maintenance on geometry irregularity improvement of ballast track in high-speed railway

More Information
  • 摘要: 根据高速铁路有砟轨道综合作业前后的轨道几何状态检测数据, 分析了以大机作业、人工精调和钢轨打磨为主的综合作业对高速铁路有砟轨道几何不平顺的改善情况。分析结果表明: 大机作业、人工精调和钢轨打磨的综合作业可联合改善轨道几何不平顺, 其中, 大机作业对高低、水平、三角坑不平顺的改善率分别为20.95%、12.90%和13.16%, 人工精调对高低、水平、三角坑和轨距不平顺的改善率分别为11.97%、5.56%、7.43%和6.12%, 钢轨打磨对高低和轨向不平顺的改善率分别为4.85%和3.88%, 轨道质量指数在大机作业、人工精调、钢轨打磨后的改善率分别为11.54%、6.91%和1.10%, 因此, 大机作业和人工精调对各个单项不平顺改善效果明显, 大机作业的贡献最大, 而人工精调可在一定程度上改善轨距不平顺, 钢轨打磨对高低不平顺和轨向不平顺进一步改善, 但对水平不平顺、轨距不平顺和三角坑不平顺等改善效果不明显; 经过综合作业, 单项不平顺与轨道质量指数均呈下降趋势, 其中轨道质量指数、高低不平顺、水平不平顺、右轨向不平顺近似呈幂函数趋势降低, 左轨向不平顺近似呈线性函数趋势降低, 三角坑不平顺近似呈对数函数趋势降低, 反映了大机作业对轨道几何状态改善程度高, 人工精调、钢轨打磨进一步改善部分单项不平顺的情况。

     

  • 图  1  钢轨打磨作业施工流程

    Figure  1.  Construction process of rail grinding operation

    图  2  各作业阶段单项不平顺改善趋势

    Figure  2.  Improvement trend of single irregularity at each stage

    图  3  轨向不平顺改善量与改善率

    Figure  3.  Improvement amounts and improvement rates of track alignment irregularity

    图  4  高低不平顺改善量与改善率

    Figure  4.  Improvement amounts and improvement rates of track vertical irregularity

    图  5  水平不平顺改善量与改善率

    Figure  5.  Improvement amounts and improvement rates of track cross irregularity

    图  6  轨距不平顺改善量与改善率

    Figure  6.  Improvement amounts and improvement rates of track gauge irregularity

    图  7  三角坑不平顺改善量与改善率

    Figure  7.  Improvement amounts and improvement rates of track twist irregularity

    图  8  TQI改善量与改善率

    Figure  8.  Improvement amounts and improvement rates of TQI

    图  9  各作业阶段轨向不平顺改善趋势拟合

    Figure  9.  Fitting of improvement trend of track alignment irregularity at each stage of operation

    图  10  各作业阶段高低不平顺改善趋势拟合

    Figure  10.  Fitting of improvement trend of track vertical irregularity at each stage of operation

    图  11  各作业阶段水平不平顺改善趋势拟合

    Figure  11.  Fitting of improvement trend of track cross irregularity at each stage of operation

    图  12  各作业阶段轨距不平顺改善趋势

    Figure  12.  Improvement trend of track gauge irregularity at each stage of operation

    图  13  各作业阶段三角坑不平顺改善趋势拟合

    Figure  13.  Fitting of improvement trend of track twist irregularity at each stage of operation

    图  14  各作业阶段TQI改善趋势拟合

    Figure  14.  Fitting of improvement trend of TQI at each stage of operation

    表  1  单项几何不平顺标准差和TQI

    Table  1.   Single geometry irregularity standard deviations and TQIs

    下载: 导出CSV

    表  2  大机作业前后检测数据统计分析

    Table  2.   Statistical analysis of test data before and after large machinery work  mm

    下载: 导出CSV

    表  3  不同作业方式前后轨道几何不平顺改善效果

    Table  3.   Improvement effects of track geometry irregularity before and after different maintenance modes mm

    下载: 导出CSV
  • [1] 赵立宁. 有砟轨道TQI关键参数对高速行车的影响研究[D]. 北京: 北京交通大学, 2015.

    ZHAO Li-ning. Study on the effect of TQI key parameters of ballasted track on high-speed train running state[D]. Beijing: Beijing Jiaotong University, 2015. (in Chinese).
    [2] 张紫菱. 基于轨道质量状态的高速铁路轨道维修周期的预测[D]. 北京: 北京交通大学, 2013.

    ZHANG Zi-ling. Prediction of high-speed railway track maintenance cycle based on track quality state[D]. Beijing: Beijing Jiaotong University, 2013. (in Chinese).
    [3] 徐伟昌. 大型养路机械捣固作业维修决策模型研究[J]. 铁道科学与工程学报, 2016, 13 (1): 152-157. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201601023.htm

    XU Wei-chang. Maintenance decision model based on large machinery tamping work[J]. Journal of Railway Science and Engineering, 2016, 13 (1): 152-157. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201601023.htm
    [4] 刘畅. 高速铁路有砟道床大型养路机械作业机理及工艺研究[D]. 北京: 北京交通大学, 2016.

    LIU Chang. Study on operation mechanism and technology of large-scale maintenance machine used in high-speed railway ballast bed[D]. Beijing: Beijing Jiaotong University, 2016. (in Chinese).
    [5] 缪孝宏. 大机作业原理及实践[J]. 高速铁路技术, 2013, 4 (1): 98-100.

    MIAO Xiao-hong. Operating principle and performance of large track maintenance machinery[J]. High Speed Railway Technology, 2013, 4 (1): 98-100. (in Chinese).
    [6] 杨德明. 高速铁路线路轨道工务维修养护研究[D]. 成都: 西南交通大学, 2014.

    YANG De-ming. Research on high speed railway track maintenance[D]. Chengdu: Southwest Jiaotong University, 2014. (in Chinese).
    [7] 胡传亮. 运用层次分析法对大型养路机械综合维修质量的评价研究[D]. 北京: 清华大学, 2008.

    HU Chuan-liang. Evaluations of the quality of comprehensive maintenance on large track maintenance machinery by AHP[D]. Beijing: Tsinghua University, 2008. (in Chinese).
    [8] 徐伟昌. 大型养路机械捣固作业轨道质量评价指数研究[J]. 铁道建筑, 2014 (7): 139-142. doi: 10.3969/j.issn.1003-1995.2014.07.41

    XU Wei-chang. Study on track quality evaluation index for tamping operation of large-type maintenance machine[J]. Railway Engineering, 2014 (7): 139-142. (in Chinese). doi: 10.3969/j.issn.1003-1995.2014.07.41
    [9] 孙建锋, 池茂儒, 吴兴文, 等. 基于能量法的轮对蛇行运动稳定性[J]. 交通运输工程学报, 2018, 18 (2): 82-89. http://transport.chd.edu.cn/article/id/201802009

    SUN Jian-feng, CHI Mao-ru, WU Xing-wen, et al. Hunting motion stability of wheelset based on energy method[J]. Journal of Traffic and Transportation Engineering, 2018, 18 (2): 82-89. (in Chinese). http://transport.chd.edu.cn/article/id/201802009
    [10] AUDLEY M, ANDREWS J D. The effects of tamping on railway track geometry degradation[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2013, 227 (4): 376-391. doi: 10.1177/0954409713480439
    [11] 张国全. 降低高速铁路TQI指标相关分析[J]. 铁道建筑技术, 2016 (2): 75-78. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJS201602018.htm

    ZHANG Guo-quan. Correlation analysis on how to reduce the TQI index of high-speed railway[J]. Railway Construction Technology, 2016 (2): 75-78. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDJS201602018.htm
    [12] 陈勋. 沪宁城际高速铁路轨道质量指数分布规律研究[J]. 铁道标准设计, 2013 (7): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201307002.htm

    CHEN Xun. Research on distribution rule of track quality index of Shanghai-Nanjing Intercity High-speed Railway[J]. Railway Standard Design, 2013 (7): 1-5. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201307002.htm
    [13] 毛帅. 京九线亳州至阜北区段轨道质量指数TQI分析及预测研究[D]. 北京: 中国铁道科学研究院, 2014.

    MAO Shuai. Analysis and forecast of the Beijing Kowloon Line Bozhou to Fubei Section of track quality index[D]. Beijing: China Academy of Railway Sciences, 2014. (in Chinese).
    [14] LI M X D, BERGGREN E G, BERG M, et al. Assessing track geometry quality based on wavelength spectra and track-vehicle dynamic interaction[J]. Vehicle System Dynamics, 2008, 46 (S1): 261-276.
    [15] WOODWARD P K, EL KACIMI A, LAGHROUCHE O, et al. Application of polyurethane geocomposites to help maintain track geometry for high-speed ballasted railway tracks[J]. Journal of Zhejiang University—Science A: Applied Physics and Engineering, 2012, 13 (11): 836-849.
    [16] IONESCU D. Evaluation of the engineering behaviour of railway ballast[D]. Wollongong: University of Wollongong, 2004.
    [17] NURMIKOLU A. Key aspects on the behaviour of the ballast and substructure of a modern railway track: researchbased practical observations in Finland[J]. Journal of Zhejiang University—Science A: Applied Physics and Engineering, 2012, 13 (11): 825-835.
    [18] LICHTBERGER B W. Railway track optimisation by efficient track maintenance machinery and strategies[J]. Rail Engineering International, 2007, 36 (4): 3-6.
    [19] MAGEL E E, KALOUSEK J. The application of contact mechanics to rail profile design and rail grinding[J]. Wear, 2002, 253 (1/2): 308-316.
    [20] PERSSON I, NILSSON R, BIK U, et al. Use of a genetic algorithm to improve the rail profile on Stockholm underground[J]. Vehicle System Dynamics, 2010, 48 (S1): 89-104.
    [21] ZAKHAROV S, GORYACHEVA I, BOGDANOV V, et al. Problems with wheel and rail profiles selection and optimization[J]. Wear, 2008, 265 (9/10): 1266-1272.
    [22] CHOI H Y, LEE D H, SONG C Y, et al. Optimization of rail profile to reduce wear on curved track[J]. International Journal of Precision Engineering and Manufacturing, 2013, 14 (4): 619-625.
    [23] TORSTENSSON P T, PIERINGER A, NIELSEN J C O. Simulation of rail roughness growth on small radius curves using a non-Hertzian and non-steady wheel-rail contact model[J]. Wear, 2014, 314 (1/2): 241-253.
    [24] SHIMIZU A, IIDA T. Analyzing effect of profile change of top surface of 60kg rail upon vehicle dynamics[J]. Quarterly Report of RTRI, 2015, 56 (1): 21-25.
    [25] 吴清华. 基于绝对坐标的轨道线路拟合整正方法研究[D]. 长沙: 中南大学, 2012.

    WU Qing-hua. A study of track line realignment method based on absolute coordinates[D]. Changsha: Central South University, 2012. (in Chinese).
    [26] 蔡杰, 应立军, 周建. 关于高精度轨道绝对坐标测量系统应用的探讨[J]. 企业技术开发, 2009, 28 (3): 61-62. https://www.cnki.com.cn/Article/CJFDTOTAL-QYJK200903021.htm

    CAI Jie, YING Li-jun, ZHOU Jian. Discussion on the application of high-precision railway absolute coordinate measure system[J]. Technological Development of Enterprise, 2009, 28 (3): 61-62. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QYJK200903021.htm
    [27] 金学松, 杜星, 郭俊, 等. 钢轨打磨技术研究进展[J]. 西南交通大学学报, 2010, 45 (1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201001002.htm

    JIN Xue-song, DU Xing, GUO Jun, et al. State of arts of research on rail grinding[J]. Journal of Southwest Jiaotong University, 2010, 45 (1): 1-11. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201001002.htm
    [28] 刘月明, 李建勇, 蔡永林, 等. 钢轨打磨技术现状和发展趋势[J]. 中国铁道科学, 2014, 35 (4): 29-37. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201404005.htm

    LIU Yue-ming, LI Jian-yong, CAI Yong-lin, et al. Current state and development trend of rail grinding technology[J]. China Railway Science, 2014, 35 (4): 29-37. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201404005.htm
    [29] MEGEL E, RONEY M, KALOUSEK J. The blending of theory and practice in modern rail grinding[J]. Fatigue and Fracture of Engineering Materials and Structures, 2010, 26 (10): 921-929.
    [30] GERLICI J, LACK T. Contact geometry influence on the rail/wheel surface stress distribution[J]. Procedia Engineering, 2010, 2 (1): 2249-2257.
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  491
  • HTML全文浏览量:  122
  • PDF下载量:  617
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-27
  • 刊出日期:  2018-10-25

目录

    /

    返回文章
    返回