留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速列车牵引变压器悬挂参数动态优化设计

贺小龙 张立民 张富兵 罗天洪

贺小龙, 张立民, 张富兵, 罗天洪. 高速列车牵引变压器悬挂参数动态优化设计[J]. 交通运输工程学报, 2018, 18(5): 100-110. doi: 10.19818/j.cnki.1671-1637.2018.05.010
引用本文: 贺小龙, 张立民, 张富兵, 罗天洪. 高速列车牵引变压器悬挂参数动态优化设计[J]. 交通运输工程学报, 2018, 18(5): 100-110. doi: 10.19818/j.cnki.1671-1637.2018.05.010
HE Xiao-long, ZHANG Li-min, ZHANG Fu-bing, LUO Tian-hong. Dynamic optimization design of hanging parameters for traction transformer of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2018, 18(5): 100-110. doi: 10.19818/j.cnki.1671-1637.2018.05.010
Citation: HE Xiao-long, ZHANG Li-min, ZHANG Fu-bing, LUO Tian-hong. Dynamic optimization design of hanging parameters for traction transformer of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2018, 18(5): 100-110. doi: 10.19818/j.cnki.1671-1637.2018.05.010

高速列车牵引变压器悬挂参数动态优化设计

doi: 10.19818/j.cnki.1671-1637.2018.05.010
基金项目: 

国家重点研发计划项目 2016YFB1200505

国家自然科学基金项目 U1334206

详细信息
    作者简介:

    贺小龙(1989-), 男, 四川苍溪人, 重庆文理学院讲师, 工学博士, 从事车辆动力学研究

  • 中图分类号: U264.36

Dynamic optimization design of hanging parameters for traction transformer of high-speed train

More Information
  • 摘要: 为了优化牵引变压器悬挂参数, 建立了车辆设备21自由度刚柔耦合系统模型, 并基于新型快速显式数值积分法求解了车辆和牵引变压器的振动响应; 计算了车辆系统在不同速度等级下的舒适度指标和设备振动烈度, 确定了变压器最优悬挂频率; 建立了变压器数学模型与车辆设备刚柔耦合模型, 结合最优悬挂频率、振动烈度、舒适度指标、隔振器动态作用力以及变压器悬挂模态与车辆地板局部模态匹配指标对隔振器参数在动态条件下进行多目标优化, 计算了牵引变压器隔振器最优参数。研究结果表明: 当牵引变压器悬挂频率比为0.82~0.98时, 车辆舒适度低于2, 设备振动烈度低于4.5mm·s-1, 满足相关规范要求; 经过优化最终确定第1组隔振器垂向刚度、三组隔振器刚度比、每组隔振器三向刚度比分别为2 142N·mm-1、1∶1.3∶2.5、1.7∶0.5∶1, 与变压器原始悬挂方案相比优化后变压器振动烈度最大降低42% (在速度高于200km·h-1条件下), 车辆一位端、中部、二位端舒适度指标平均提升3.53%、3.45%、2.01%, 第1、4隔振器垂向作用力平均降低13.3%, 第2、5隔振器垂向作用力平均降低3.8%, 第3、6隔振器垂向作用力平均降低20.9%。可见, 优化后车辆舒适度、设备振动烈度和隔振器垂向动态作用力均有较好改善。

     

  • 图  1  参数优化设计流程

    Figure  1.  Flow of parameter optimization design

    图  2  车辆设备耦合系统数学模型

    Figure  2.  Mathematical model of vehicle-equipment coupling system

    图  3  车辆沉浮响应

    Figure  3.  Vehicle bounce response

    图  4  车辆点头响应

    Figure  4.  Vehicle pitch response

    图  5  车辆垂向弯曲响应

    Figure  5.  Vehicle vertical bending response

    图  6  一位端舒适度指标

    Figure  6.  Comfort degree index above front bogie

    图  7  二位端舒适度指标

    Figure  7.  Comfort degree index above rear bogie

    图  8  车辆中部舒适度指标

    Figure  8.  Comfort degree index in middle car

    图  9  变压器振动烈度

    Figure  9.  Transformer vibration severity

    图  10  车辆设备刚柔耦合动力学模型

    Figure  10.  Rigid-flexible coupling dynamics model of vehicle-equipment

    图  11  车辆地板局部模态计算结果

    Figure  11.  Local modal calculating results of vehicle floor

    图  12  模态匹配结果

    Figure  12.  Modal matching result

    图  13  设备振动烈度对比

    Figure  13.  Comparison of equipment vibration severities

    图  14  一位端舒适度指标对比

    Figure  14.  Comparison of comfort degree indexes above front bogie

    图  15  车辆中部舒适度指标对比

    Figure  15.  Comparison of comfort degree indexes in middle car

    图  16  二位端舒适度指标对比

    Figure  16.  Comparison of comfort degree indexes above rear bogie

    图  17  隔振器三向作用力

    Figure  17.  Three directions's forces of vibration isolators

    表  1  优化变量初始值

    Table  1.   Optimizing variables'initial values

    下载: 导出CSV

    表  2  优化变量计算结果

    Table  2.   Optimizing variables'calculating result

    下载: 导出CSV

    表  3  隔振器参数最终优化结果

    Table  3.   Final optimization results of vibration isolator parameters

    下载: 导出CSV
  • [1] ZHANG Wei-hua, ZENG Jing, LI Yan. A review of vehicle system dynamics in the development of high-speed trains in China[J]. International Journal of Dynamics and Control, 2013, 1 (1): 81-97. doi: 10.1007/s40435-013-0005-1
    [2] MORIMURA T, SEKI M. The course of achieving 270km·h-1operation for Tokaido Shinkansen—Part 1: technology and operations overview[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2005, 219 (1): 21-26. doi: 10.1243/095440905X8781
    [3] SCHANDL G, LUGNER P, BENATZKY C, et al. Comfort enhancement by an active vibration reduction system for a flexible railway car body[J]. User Modeling and UserAdapted Interaction, 2007, 45 (9): 835-847.
    [4] 贺小龙, 张立民, 鲁连涛, 等. 基于轻量化及刚度的铝合金车体承载结构参数选择研究[J]. 铁道学报, 2016, 38 (11): 26-32. doi: 10.3969/j.issn.1001-8360.2016.11.004

    HE Xiao-long, ZHANG Li-min, LU Lian-tao, et al. Study on selection of aluminum alloy car body bearing structural parameters based on lightweight and stiffness[J]. Journal of the China Railway Society, 2016, 38 (11): 26-32. (in Chinese). doi: 10.3969/j.issn.1001-8360.2016.11.004
    [5] TAKIGAMI T, TOMIOKA T, HANSSON J. Vibration suppression of railway vehiclecarbody with piezoelectric elements (a study by using a scale model of Shinkansen)[J]. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2007, 1 (5): 649-660. doi: 10.1299/jamdsm.1.649
    [6] 贺小龙, 张立民, 鲁连涛. 多悬挂设备对高速列车乘坐舒适性影响分析[J]. 机械工程学报, 2018, 54 (6): 69-77. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201806010.htm

    HE Xiao-long, ZHANG Li-min, LU Lian-tao. Impact analysis of multi hanging equipment on high speed train ride comfort[J]. Journal of Mechanical Engineering, 2018, 54 (6): 69-77. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201806010.htm
    [7] 黄彩虹, 曾京. 基于约束阻尼层的高速客车车体弯曲振动的抑制[J]. 交通运输工程学报, 2010, 10 (1): 36-42. doi: 10.3969/j.issn.1671-1637.2010.01.007

    HUANG Cai-hong, ZENG Jing. Flexural vibration suppression of car body for high-speed passenger car based on constrained damping layers[J]. Journal of Traffic and Transportation Engineering, 2010, 10 (1): 36-42. (in Chinese). doi: 10.3969/j.issn.1671-1637.2010.01.007
    [8] 黄彩虹, 曾京, 邬平波, 等. 铁道客车车体弹性振动减振研究[J]. 工程力学, 2010, 27 (12): 250-256. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201012041.htm

    HUANG Cai-hong, ZENG Jing, WU Ping-bo, et al. Study on car body flexible vibration reduction for railway passenger carriage[J]. Engineering Mechanics, 2010, 27 (12): 250-256. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201012041.htm
    [9] LUO Guang-bing, ZENG Jing, WANG Qun-sheng. Identifying the relationship between suspension parameters of underframe equipment and carbody modal frequency[J]. Journal of Modern Transportation, 2014, 22 (4): 206-213. doi: 10.1007/s40534-014-0060-0
    [10] SUN Wen-jing, GONG Dao, ZHOU Jin-song, et al. Influences of suspended equipment under car body on high-speed train ride quality[J]. Procedia Engineering, 2011, 16: 812-817. doi: 10.1016/j.proeng.2011.08.1159
    [11] DUMITRIU M. Influence of suspended equipment on the carbody vertical vibration behaviour of high-speed railway vehicles[J]. Archive of Mechanical Engineering, 2016, 63 (1): 145-162. doi: 10.1515/meceng-2016-0008
    [12] DUMITRIU M. A new passive approach to reducing the car body vertical bending vibration of railway vehicles[J]. Vehicle System Dynamics, 2017, 55 (11): 1787-1806. doi: 10.1080/00423114.2017.1330962
    [13] DUMITRIU M. On the critical points of vertical vibration in a railway vehicle[J]. Archive of Mechanical Engineering, 2014, 61 (4): 609-625. doi: 10.2478/meceng-2014-0035
    [14] DUMITRIU M. Influence of the vertical suspension on the vibration behavior in the railway vehicles[J]. Annals of the University of Petro爧ani, Mechanical Engineering, 2011, 13: 35-50. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202010017.htm
    [15] 宫岛, 周劲松, 杜帅妹, 等. 高速动车组车下设备对车体振动传递与模态频率的影响机理研[J]. 机械工程学报, 2016, 52 (18): 126-133. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201618018.htm

    GONG Dao, ZHOU Jin-song, DU Shuai-mei, et al. Study on the effect of the underframe equipment on vibration transmissibility and modal frequency of the car body for highspeed EMU trains[J]. Journal of Mechanical Engineering, 2016, 52 (18): 126-133. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201618018.htm
    [16] GONG Dao, ZHOU Jin-Song, SUN Wen-Jing. On the resonant vibration of a flexible railway car body and its suppression with a dynamic vibration absorber[J]. Journal of Vibration and Control, 2012, 19 (5): 649-657.
    [17] GONG Dao, ZHOU Jin-song, SUN Wen-Jing. Influence of under-chassis-suspended equipment on high-speed EMU trains and the design of suspension parameters[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2016, 230 (8): 1790-1802. doi: 10.1177/0954409715614601
    [18] 宫岛, 周劲松, 孙文静, 等. 下吊设备对高速列车弹性车体垂向运行平稳性影响[J]. 中国工程机械学报, 2011, 9 (4): 404-409. doi: 10.3969/j.issn.1672-5581.2011.04.005

    GONG Dao, ZHOU Jin-song, SUN Wen-jing, et al. Impacts of hanging equipments on vertical riding stability of elastic high-speed train bodies[J]. Chinese Journal of Construction Machinery, 2011, 9 (4): 404-409. (in Chinese). doi: 10.3969/j.issn.1672-5581.2011.04.005
    [19] 石怀龙, 罗仁, 邬平波, 等. 基于动力吸振原理的动车组车下设备悬挂参数设计[J]. 机械工程学报, 2014, 50 (14): 155-161. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201414026.htm

    SHI Huai-long, LUO Ren, WU Ping-bo, et al. Suspension parameters designing of equipment for electric multiple units based on dynamic vibration absorber theory[J]. Journal of Mechanical Engineering, 2014, 50 (14): 155-161. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201414026.htm
    [20] SHI Huai-long, LUO Ren, WU Ping-bo, et al. Influence of equipment excitation on flexible carbody vibration of EMU[J]. Journal of Modern Transportation, 2014, 22 (4): 195-205. doi: 10.1007/s40534-014-0061-z
    [21] SHI Huai-long, WU Ping-bo. Flexible vibration analysis for car body of high-speed EMU[J]. Journal of Mechanical Science and Technology, 2016, 30 (1): 55-66. doi: 10.1007/s12206-015-1207-6
    [22] 吴会超, 邬平波, 吴娜, 等. 车下设备悬挂参数与车体结构之间匹配关系研究[J]. 振动与冲击, 2013, 32 (3): 124-128. doi: 10.3969/j.issn.1000-3835.2013.03.025

    WU Hui-chao, WU Ping-bo, WU Na, et al. Matching relations between equipment suspension parameters and a carbody structure[J]. Journal of Vibration and Shock, 2013, 32 (3): 124-128. (in Chinese). doi: 10.3969/j.issn.1000-3835.2013.03.025
    [23] 曾京, 邬平波, 郝建华. 铁道客车系统的垂向减振分析[J]. 中国铁道科学, 2006, 27 (3): 62-67. doi: 10.3321/j.issn:1001-4632.2006.03.011

    ZENG Jing, WU Ping-bo, HAO Jian-hua. Analysis of vertical vibration reduction for railway vehicle systems[J]. China Railway Science, 2006, 27 (3): 62-67. (in Chinese). doi: 10.3321/j.issn:1001-4632.2006.03.011
    [24] 曾京, 罗仁. 考虑车体弹性效应的铁道客车系统振动分析[J]. 铁道学报, 2007, 29 (6): 19-25. doi: 10.3321/j.issn:1001-8360.2007.06.004

    ZENG Jing, LUO Ren. Vibration analysis of railway passenger car systems by considering flexible car body effect[J]. Journal of the China Railway Society, 2007, 29 (6): 19-25. (in Chinese). doi: 10.3321/j.issn:1001-8360.2007.06.004
    [25] 翟婉明. 车辆-轨道耦合动力学[M]. 北京: 科学出版社, 2007.

    ZHAI Wan-ming. Vehicle-Track Coupling Dynamics[M]. Beijing: Science Press, 2007.
    [26] 朱剑月, 朱良光, 周劲松, 等. 地铁车辆运行舒适度与平稳性评价[J]. 城市轨道交通研究, 2007, 10 (6): 28-31. doi: 10.3969/j.issn.1007-869X.2007.06.010

    ZHU Jian-yue, ZHU Liang-guang, ZHOU Jin-song. Evaluation of riding comfort and stability index of metro vehicles[J]. Urban Mass Transit, 2007, 10 (6): 28-31. (in Chinese). doi: 10.3969/j.issn.1007-869X.2007.06.010
    [27] 樊新海, 赵智勇, 安钢, 等. 机械振动烈度的频域算法研究[J]. 装甲兵工程学院学报, 2008, 22 (1): 42-45. doi: 10.3969/j.issn.1672-1497.2008.01.010

    FAN Xin-hai, ZHAO Zhi-yong, AN Gang, et al. Research on the arithmetic of mechanical vibration severity in frequency domain[J]. Journal of Academy of Armored Force Engineering, 2008, 22 (1): 42-45. (in Chinese). doi: 10.3969/j.issn.1672-1497.2008.01.010
    [28] 陈楚才, 闫兵, 樊康, 等. 柴油发电机组隔振系统评价指标相关标准综述[J]. 机械工程与自动化, 2017 (4): 219-221, 226. https://www.cnki.com.cn/Article/CJFDTOTAL-SXJX201704095.htm

    CHEN Chu-cai, YAN Bing, FAN Kang, et al. Overview of relevant standards for performance evaluation indexes of diesel generator set's vibration isolation system[J]. Mechanical Engineering and Automation, 2017 (4): 219-221, 226. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SXJX201704095.htm
    [29] 孙玉华, 董大伟, 闫兵, 等. 双层隔振系统模态匹配分析及其振动特性[J]. 振动、测试与诊断, 2014, 34 (4): 727-731, 781. doi: 10.3969/j.issn.1004-6801.2014.04.022

    SUN Yu-hua, DONG Da-wei, YAN Bing, et al. Modal matching analysis and vibration characteristics of two-stage vibration isolationsystem[J]. JournalofVibration, Measurement and Diagnosis, 2014, 34 (4): 727-731, 781. (in Chinese). doi: 10.3969/j.issn.1004-6801.2014.04.022
    [30] 陈俊, 丁杰, 闫兵, 等. 子系统参数对双层隔振系统隔振特性的影响[J]. 交通运输工程学报, 2018, 18 (3): 114-128. http://transport.chd.edu.cn/article/id/201803012

    CHEN Jun, DING Jie, YAN Bing, et al. Effect of subsystem parameters on vibration isolation characteristics of two-stage vibration isolation system[J]. Journal of Traffic and Transportation Engineering, 2018, 18 (3): 114-128. (in Chinese). http://transport.chd.edu.cn/article/id/201803012
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  620
  • HTML全文浏览量:  97
  • PDF下载量:  300
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-13
  • 刊出日期:  2018-10-25

目录

    /

    返回文章
    返回