留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液罐车液体侧向晃动多质量椭圆规摆模型

杨秀建 邢云祥 吴相稷 张昆

杨秀建, 邢云祥, 吴相稷, 张昆. 液罐车液体侧向晃动多质量椭圆规摆模型[J]. 交通运输工程学报, 2018, 18(5): 140-151. doi: 10.19818/j.cnki.1671-1637.2018.05.014
引用本文: 杨秀建, 邢云祥, 吴相稷, 张昆. 液罐车液体侧向晃动多质量椭圆规摆模型[J]. 交通运输工程学报, 2018, 18(5): 140-151. doi: 10.19818/j.cnki.1671-1637.2018.05.014
YANG Xiu-jian, XING Yun-xiang, WU Xiang-ji, ZHANG Kun. Multi-mass trammel pendulum model of fluid lateral sloshing for tank vehicle[J]. Journal of Traffic and Transportation Engineering, 2018, 18(5): 140-151. doi: 10.19818/j.cnki.1671-1637.2018.05.014
Citation: YANG Xiu-jian, XING Yun-xiang, WU Xiang-ji, ZHANG Kun. Multi-mass trammel pendulum model of fluid lateral sloshing for tank vehicle[J]. Journal of Traffic and Transportation Engineering, 2018, 18(5): 140-151. doi: 10.19818/j.cnki.1671-1637.2018.05.014

液罐车液体侧向晃动多质量椭圆规摆模型

doi: 10.19818/j.cnki.1671-1637.2018.05.014
基金项目: 

国家自然科学基金项目 51465023

详细信息
    作者简介:

    杨秀建(1980-), 男, 山东海阳人, 昆明理工大学教授, 工学博士, 从事车辆动力学与控制技术研究

  • 中图分类号: U469.6

Multi-mass trammel pendulum model of fluid lateral sloshing for tank vehicle

More Information
  • 摘要: 为深入研究液罐车整车侧向动力学行为, 探讨了椭圆形(圆形) 截面罐体等效机械液体侧向晃动模型; 基于计算流体动力学(CFD) 软件FLUENT, 评价了椭圆规摆(TP) 模型的预测精度, 分析了充液比、罐体截面椭圆率和激励频率对模型预测精度的影响; 提出了广义多质量TP模型, 通过合理分配液摆各部分质量及其间距来适应罐体截面椭圆率和充液比的变化; 基于Lagrange方法推导了广义多质量TP模型动力学方程, 给出了双质量TP (DMTP) 模型的质量比和质量间距参数的获取方法和拟合表达式, 并采用CFD方法评价了DMTP模型的预测精度。分析结果表明: 由TP模型得到的晃动力矩总体较CFD方法的小, 随着充液比和激励频率的增加, 预测误差变大, 充液比由30%增加到80%时, 峰值晃动力矩预测误差由15%增加到65%左右, 这主要是由于TP模型是在液体小初始倾斜角自由晃动条件下拟合所得, 当充液比和晃动频率较高时, 液摆的摆臂长度和参与晃动的液体质量都小于实际情况; DMTP模型在大部分充液比、罐体截面椭圆率和激励频率条件下都有相对稳定且较高的预测精度, 激励频率分别为0.2、0.3Hz时, DMTP模型的最大晃动力矩预测均方根误差均值和标准差分别比TP模型小54.2%、43.9%和45.1%、31.2%, 预测精度较TP模型有明显提高, 特别是能够较好地弥补TP模型在高充液比时预测误差较大的不足。

     

  • 图  1  液罐车TP等效机械液体侧向晃动模型

    Figure  1.  TP equivalent mechanical model of fluid lateral sloshing for tank vehicle

    图  2  TP等效机械液体侧向晃动模型

    Figure  2.  TP equivalent mechanical fluid lateral sloshing model

    图  3  晃动力矩时域响应与CFD晃动云图(Δ=1.0, f=0.2Hz, Ω=30%, t=7s)

    Figure  3.  Responses of sloshing moment in time domain and CFD sloshing contours (Δ=1.0, f=0.2Hz, Ω=30%, t=7s)

    图  4  晃动力矩时域响应与CFD晃动云图(Δ=1.0, f=0.2Hz, Ω=50%, t=7s)

    Figure  4.  Responses of sloshing moment in time domain and CFD sloshing contours (Δ=1.0, f=0.2Hz, Ω=50%, t=7s)

    图  5  晃动力矩时域响应与CFD晃动云图(Δ=1.0, f=0.2Hz, Ω=80%, t=7s)

    Figure  5.  Responses of sloshing moment in time domain and CFD sloshing contours (Δ=1.0, f=0.2Hz, Ω=80%, t=7s)

    图  6  晃动力矩时域响应与CFD晃动云图(Δ=1.6, f=0.4Hz, Ω=30%, t=3.5s)

    Figure  6.  Rsponses of sloshing moment in time domain and CFD sloshing contours (Δ=1.6, f=0.4Hz, Ω=30%, t=3.5s)

    图  7  晃动力矩时域响应与CFD晃动云图(Δ=1.6, f=0.4Hz, Ω=50%, t=3.5s)

    Figure  7.  Responses of sloshing moment in time domain and CFD sloshing contours (Δ=1.6, f=0.4Hz, Ω=50%, t=3.5s)

    图  8  晃动力矩时域响应与CFD晃动云图(Δ=1.6, f=0.4Hz, Ω=80%, t=3.5s)

    Figure  8.  Responses of sloshing moment in time domain and CFD sloshing contours (Δ=1.6, f=0.4Hz, Ω=80%, t=3.5s)

    图  9  广义多质量TP模型

    Figure  9.  Generalized multi-mass TP model

    图  10  广义多质量TP模型坐标系与运动学关系

    Figure  10.  Coordinates and kinematics relationship of generalized multi-mass TP model

    图  11  bp1/bt随Δ和Π的变化

    Figure  11.  Variation in bp1/btwithΔandΠ

    图  12  mp/mfΔΠ的变化

    Figure  12.  Variation in mp/mf with Δ and Π

    图  13  L12/bp1ΔΠ的变化

    Figure  13.  Variation in L12/bp1with Δ and Π

    图  14  Λ2ΔΠ的变化

    Figure  14.  Variation in Λ2 with Δ and Π

    图  15  Δ=1.0, f=0.2Hz时的液体晃动力矩

    Figure  15.  Sloshing moments of fluid when Δ =1.0, f=0.2Hz

    图  16  Δ=1.3, f=0.2Hz时的液体晃动力矩

    Figure  16.  Sloshing moments of fluid when Δ=1.3, f=0.2Hz

    图  17  Δ=1.6, f=0.2Hz时的液体晃动力矩

    Figure  17.  Sloshing moments of fluid when Δ=1.6, f=0.2Hz

    图  18  f=0.2Hz时晃动力矩的预测均方根误差比较

    Figure  18.  Comparision of predicted sloshing moment RMSEs when f=0.2Hz

    图  19  Δ=1.0, f=0.3Hz时的液体晃动力矩

    Figure  19.  Sloshing moments of fluid when Δ=1.0, f=0.3Hz

    图  20  Δ=1.3, f=0.3Hz时的液体晃动力矩

    Figure  20.  Sloshing moments of fluid when Δ=1.3, f=0.3Hz

    图  21  Δ=1.6, f=0.3Hz时的液体晃动力矩

    Figure  21.  Sloshing moments of fluid when Δ=1.6, f=0.3Hz

    图  22  f=0.3Hz时晃动力矩的预测均方根误差比较

    Figure  22.  Comparision of predicted sloshing moment RMSEs when f=0.3Hz

  • [1] AZADI S, JAFARI A, SAMADIAN M. Effect of parameters on roll dynamic response of an articulated vehicle carrying liquids[J]. Journal of Mechanical Scienceand Technology, 2014, 28 (3): 837-848. doi: 10.1007/s12206-013-1148-x
    [2] YANG Xiu-jian, GAO Jin. Compactly modelling and analysing the roll dynamics of a partly filled tank truck[J]. International Journal of Heavy Vehicle Systems, 2016, 23 (1): 81-105. doi: 10.1504/IJHVS.2016.074628
    [3] SHANGGUAN W B, CHEN Y, WANG Q, et al. Simulation of apartly filled tank vehicle combination in TruckSim and tank design optimisation[J]. International Journal of Heavy Vehicle Systems, 2016, 23 (3): 264-282. doi: 10.1504/IJHVS.2016.077329
    [4] TOUMI M, BOUAZARA M, RICHARD M J. Impact of liquid sloshing on thebehaviour of vehicles carrying liquid cargo[J]. European Journal of Mechanics—A/Solids, 2009, 28 (5): 1026-1034. doi: 10.1016/j.euromechsol.2009.04.004
    [5] BOTTIGLIONE F, MANTRIOTA G. Field tests and validation of dynamical models of tank vehicles partⅠ: mathematical model and experimental apparatus[J]. International Journal of Heavy Vehicle Systems, 2012, 19 (1): 1-22. doi: 10.1504/IJHVS.2012.045757
    [6] BOTTIGLIONE F, MANTRIOTA G. Field tests and validation of dynamical models of tank vehicles partⅡ: experimental tests and results[J]. International Journal of Heavy Vehicle Systems, 2012, 19 (19): 23-39.
    [7] IBRAHIM R A, PILIPCHUK V N, IKEDA T. Recent advances in liquid sloshing dynamics[J]. Applied Mechanics Reviews, 2001, 54 (2): 133-199. doi: 10.1115/1.3097293
    [8] KANG X, RAKHEJA S, STIHARU I. Cargo load shift and its influence on tank vehicle dynamics under braking and turning[J]. International Journal of Heavy Vehicle Systems, 2002, 9 (3): 173-203. doi: 10.1504/IJHVS.2002.001175
    [9] MODARESSI-TEHRANI K, RAKHEJA S, SEDAGHATI R. Analysis of the overturning moment caused by transient liquid slosh inside a partly filled moving tank[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2006, 220 (3): 289-301. doi: 10.1243/09544070D01705
    [10] RANGANATHAN R, YING Y, MILES J B. Analysis of fluid slosh in partially filled tanks and their impact on the directional response of tank vehicles[J]. SAE Technical Paper, 1993-932942.
    [11] NICHKAWDE C, HARISH P M, ANANTHKRISHNAN N. Stability analysis of a multibody system model for coupled slosh-vehicle dynamics[J]. Journal of Sound and Vibration, 2004, 275 (3-5): 1069-1083. doi: 10.1016/j.jsv.2003.07.009
    [12] MANTRIOTA G. Directional stability of articulated tank vehicles: a simplified model[J]. International Journal of Heavy Vehicle Systems, 2003, 10 (1/2): 144-165. doi: 10.1504/IJHVS.2003.002438
    [13] SALEM M I. Rollover stability of partially filled heavy-duty elliptical tankers using trammel pendulums to simulate fluid sloshing[D]. Morgantown: West Virginia University, 2000.
    [14] SALEM M I, MUCINO V H, SAUNDERS E, et al. Lateral sloshing in partially filled elliptical tanker trucks using a trammel pendulum[J]. International Journal of Heavy Vehicle Systems, 2009, 16 (1/2): 207-224. doi: 10.1504/IJHVS.2009.023861
    [15] 郑雪莲, 李显生, 任园园, 等. 非满载汽车罐车液体冲击等效机械模型[J]. 吉林大学学报: 工学版, 2013, 43 (6): 1488-1493. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201306009.htm

    ZHENG Xue-lian, LI Xian-sheng, REN Yuan-yuan, et al. Equivalent mechanical model for liquid sloshing in partially-filled tank vehicle[J]. Journal of Jilin University: Engineering and Technology Edition, 2013, 43 (6): 1488-1493. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201306009.htm
    [16] LI Xian-sheng, ZHENG Xue-lian, REN Yuan-yuan, et al. Study on driving stability of tank trucks based on equivalent trammel pendulum for liquid sloshing[J]. Discrete Dynamics in Nature and Society, 2013, 2013: 659873-1-15.
    [17] MODARESSI-TEHRANI K, RAKHEJA S, STIHARU I. Three-dimensional analysis of transient slosh within a partlyfilled tank equipped with baffles[J]. Vehicle System Dynamics, 2007, 45 (6): 525-548. doi: 10.1080/00423110601059013
    [18] YAN G R, RAKHEJA S, SIDDIQUI K. Experimental study of liquid slosh dynamics in a partially-filled tank[J]. Journal of Fluids Engineering, 2009, 131 (7): 071303-1-14. doi: 10.1115/1.3059585
    [19] YAN G R, RAKHEJA S, SIDDIQUI K. Analysis of transient fluid slosh in partly-filled tanks with and without baffles: part1—model validation[J]. International Journal of Heavy Vehicle Systems, 2010, 17 (3/4): 359-379. doi: 10.1504/IJHVS.2010.035994
    [20] YAN G R, RAKHEJA S, SIDDIQUI K. Analysis of transient fluid slosh in partly-filled tanks with and without baffles: part2—role of baffles[J]. International Journal of Heavy Vehicle Systems, 2010, 17 (3/4): 380-406. doi: 10.1504/IJHVS.2010.035995
    [21] BIGLARBEGIAN M, ZU J W. Tractor-semitrailer model for vehicles carrying liquids[J]. Vehicle System Dynamics, 2006, 44 (11): 871-885. doi: 10.1080/00423110600737072
    [22] 李显生, 孟祥雨, 郑雪莲, 等. 非满载罐体内液体冲击动力学特性[J]. 吉林大学学报: 工学版, 2017, 47 (3): 737-743. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201703007.htm

    LI Xian-sheng, MENG Xiang-yu, ZHENG Xue-lian, et al. Dynamic characteristics of liquid sloshing in partially-filled tank[J]. Journal of Jilin University: Engineering and Technology Edition, 2017, 47 (3): 737-743. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201703007.htm
    [23] 万滢, 赵伟强, 封冉, 等. 车-液耦合动力学建模及液体响应成分对操纵性的影响[J]. 吉林大学学报: 工学版, 2017, 47 (2): 353-364. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201702003.htm

    WAN Ying, ZHAO Wei-qiang, FENG Ran, et al. Dynamic modeling and vehicle-liquid coupling characteristic analysis for tank trucks[J]. Journal of Jilin University: Engineering and Technology Edition, 2017, 47 (2): 353-364. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201702003.htm
    [24] KOLAEI A, RAKHEJA S, RICHARD M J. Effects of tank cross-section on dynamic fluid slosh loads and roll stability of a partly-filled tank truck[J]. European Journal of Mechanics—B/Fluids, 2014, 46: 46-58. doi: 10.1016/j.euromechflu.2014.01.008
    [25] KOLAEI A, RAKHEJA S, RICHARD M J. Range of applicability of the linear fluid slosh theory for predicting transient lateral slosh and roll stability of tank vehicles[J]. Journal of Sound and Vibration, 2014, 333 (1): 263-282. doi: 10.1016/j.jsv.2013.09.002
    [26] ANSARI M R, AZADI R, SALIMI E. Capturing of interface topological changes in two-phase gas-liquid flows using a coupled volume-of-fluid and level-set method (VOSET)[J]. Computers and Fluids, 2016, 125: 82-100. doi: 10.1016/j.compfluid.2015.09.014
    [27] HASHEMINEJAD S M, AGHABEIGI M. Liquid sloshing in half-full horizontal elliptical tanks[J]. Journal of Sound and Vibration, 2009, 324 (1/2): 332-349.
    [28] HASHEMINEJAD S M, MOHAMMADI M M. Effect of anti-slosh baffles on free liquid oscillations in partially filled horizontal circular tanks[J]. Ocean Engineering, 2011, 38 (1): 49-62. doi: 10.1016/j.oceaneng.2010.09.010
    [29] HASHEMINEJAD S M, AGHABEIGI M. Sloshing characteristics in half-full horizontal elliptical tanks with vertical baffles[J]. Applied Mathematical Modelling, 2012, 36 (1): 57-71. doi: 10.1016/j.apm.2011.02.026
    [30] HASHEMINEJAD S M, AGHABEIGI M. Transient sloshing in half-full horizontal elliptical tanks under lateral excitation[J]. Journal of Sound and Vibration, 2011, 330 (14): 3507-3525.
    [31] 李显生, 于迪, 张景海. 基于遗传算法的液罐车侧倾稳定性模型[J]. 中国公路学报, 2015, 28 (7): 115-120. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201507015.htm

    LI Xian-sheng, YU Di, ZHANG Jing-hai. Roll stability model of tank truck based on genetic algorithm[J]. China Journal of Highway and Transport, 2015, 28 (7): 115-120. (in Chinese. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201507015.htm
  • 加载中
图(22)
计量
  • 文章访问数:  669
  • HTML全文浏览量:  141
  • PDF下载量:  362
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-05
  • 刊出日期:  2018-10-25

目录

    /

    返回文章
    返回