留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于换乘链断裂点时空信息的公交换乘行为识别

靳海涛 金凤君 陈卓 王姣娥 杨宇

靳海涛, 金凤君, 陈卓, 王姣娥, 杨宇. 基于换乘链断裂点时空信息的公交换乘行为识别[J]. 交通运输工程学报, 2018, 18(5): 176-184. doi: 10.19818/j.cnki.1671-1637.2018.05.017
引用本文: 靳海涛, 金凤君, 陈卓, 王姣娥, 杨宇. 基于换乘链断裂点时空信息的公交换乘行为识别[J]. 交通运输工程学报, 2018, 18(5): 176-184. doi: 10.19818/j.cnki.1671-1637.2018.05.017
JIN Hai-tao, JIN Feng-jun, CHEN Zhuo, WANG Jiao-e, YANG Yu. Commute activity identification based on spatial and temporal information of transit chaining breaks[J]. Journal of Traffic and Transportation Engineering, 2018, 18(5): 176-184. doi: 10.19818/j.cnki.1671-1637.2018.05.017
Citation: JIN Hai-tao, JIN Feng-jun, CHEN Zhuo, WANG Jiao-e, YANG Yu. Commute activity identification based on spatial and temporal information of transit chaining breaks[J]. Journal of Traffic and Transportation Engineering, 2018, 18(5): 176-184. doi: 10.19818/j.cnki.1671-1637.2018.05.017

基于换乘链断裂点时空信息的公交换乘行为识别

doi: 10.19818/j.cnki.1671-1637.2018.05.017
基金项目: 

国家自然科学基金项目 41771134

中国科学院战略性先导科技专项项目 XDA19040403

详细信息
    作者简介:

    靳海涛 (1983-) , 男, 河南商丘人, 中国科学院地理科学与资源研究所理学博士研究生, 从事交通数据和地理数据研究

    金凤君 (1961-) , 男, 内蒙古赤峰人, 中国科学院地理科学与资源研究所研究员, 经济学博士

  • 中图分类号:  U491.1

Commute activity identification based on spatial and temporal information of transit chaining breaks

More Information
  • 摘要: 分析了公交智能卡数据挖掘中转乘行为、通勤出行、非通勤出行识别的改进方法, 将关注点从公交换乘过程信息转移到换乘链间隔期的持续时长和空间位移信息, 以换乘链断裂时长和位移2个维度计算公交换乘链断裂点概率, 制作工作日和非工作日断裂点时空变量联合概率分布矩阵, 对比了这2种分布的差异;检验了断裂时长序列和断裂位移序列的稳定性, 标识了2条曲线的突变点和拐点, 用于推断转乘引起的转移距离和转乘时长的阈值参数;对工作日和非工作日差值时长序列曲线进行移动平均滤波处理, 使得曲线的突变与极值之间的关联能够解释转乘、通勤出行和非通勤出行3种行为与通勤和非通勤出行之间的关联;采用北京市整个一周的地面公交和地铁系统样本数据对方法进行验证, 并根据时间序列和位移序列曲线确定样本数据中常见公交换乘行为的阈值参数。分析结果表明:断裂点时空信息对样本数据中的换乘行为能提供更合理的识别分类参数;持卡人在站点间转移的容忍距离约为1.6km;断裂点转乘时长与非通勤出行的断裂时长临界点为22~48min;非通勤出行和通勤出行的时长临界点约为478min, 非通勤出行断裂点最大概率时长为140min;通勤出行的断裂时长接近期望值为601且标准差为44的正态分布;基于新方法得出的参数改善了公交出行活动的识别率, 转乘行为、通勤出行与非通勤出行的识别率分别提高了16.1%、4.2%、6.2%。可见, 换乘链断裂点的时间信息和空间信息不但可作为公交换乘行为识别的依据, 还可能带来更好的识别效果。

     

  • 图  1  T-S矩阵中换乘行为分类

    Figure  1.  Commute activity classification in T-S matrix

    图  2  典型的工作日T-S矩阵

    Figure  2.  Typical T-S matrix on workdays

    图  3  典型的非工作日T-S矩阵

    Figure  3.  Typical T-S matrix on non-working days

    图  4  工作日T序列

    Figure  4.  T series on workdays

    图  5  工作日S序列

    Figure  5.  S series on workdays

    图  6  非工作日T序列

    Figure  6.  T series on non-working days

    图  7  非工作日S序列

    Figure  7.  S series on non-working days

    图  8  T曲线差值序列

    Figure  8.  Margin series of T curves

    图  9  通勤出行T变量的分布

    Figure  9.  Distribution of variable T in working commutes

    图  10  所有转乘断裂点与非合理转乘断裂点对比

    Figure  10.  Comparison between all TCBs and illogical transferring TCBs

    表  1  换乘链断裂点时空信息分类

    Table  1.   Classification of TCB spatial and temporal information

    下载: 导出CSV

    表  2  识别率

    Table  2.   Recognition rate

    下载: 导出CSV
  • [1] KUSAKABE T, IRYO T, ASAKURA Y. Estimation method for railway passengers'train choice behavior with smart card transaction data[J]. Transportation, 2010, 37 (5): 731-749. doi: 10.1007/s11116-010-9290-0
    [2] BAGCHI M, WHITE P R. What role for smart-card data from bus systems?[J]. Municipal Engineer, 2004, 157 (1): 39-46. doi: 10.1680/muen.2004.157.1.39
    [3] DEVILLAINE F, MUNIZAGA M, TRÉPANIER M. Detection of activities of public transport users by analyzing smart card data[J]. Transportation Research Record, 2012 (2276): 48-55.
    [4] 龙瀛, 孙立君, 陶遂. 基于公共交通智能卡数据的城市研究综述[J]. 城市规划学刊, 2015 (3): 70-77. https://www.cnki.com.cn/Article/CJFDTOTAL-CXGH201503010.htm

    LONG Ying, SUN Li-jun, TAO Sui. A review of urban studies based on transit smart card data[J]. Urban Planning Forum, 2015 (3): 70-77. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CXGH201503010.htm
    [5] PELLETIER M P, TRÉPANIER M, MORENCY C. Smart card data use in public transit: a literature review[J]. Transportation Research Part C: Emerging Technologies, 2011, 19 (4): 557-568. doi: 10.1016/j.trc.2010.12.003
    [6] WANG Wei, ATTANUCCI J P, WILSON N H M. Bus passenger origin-destination estimation and related analyses using automated data collection systems[J]. Journal of Public Transportation, 2011, 14 (4): 131-150. doi: 10.5038/2375-0901.14.4.7
    [7] 金凤君. 基础设施与人类生存环境之关系研究[J]. 地理科学进展, 2001, 20 (3): 276-285. doi: 10.3969/j.issn.1007-6301.2001.03.011

    JIN Feng-jun. Infrastructure and the living environment of human being[J]. Progress in Geography, 2001, 20 (3): 276-285. (in Chinese). doi: 10.3969/j.issn.1007-6301.2001.03.011
    [8] MA Xiao-lei, WU Yao-jan, WANG Yin-hai, et al. Mining smart card data for transit riders'travel patterns[J]. Transportation Research Part C: Emerging Technologies, 2013, 36: 1-12. doi: 10.1016/j.trc.2013.07.010
    [9] TRÉPANIER M, TRANCHANT N, CHAPLEAU R. Individual trip destination estimation in a transit smart card automated fare collection system[J]. Journal of Intelligent Transportation Systems, 2007, 11 (1): 1-14. doi: 10.1080/15472450601122256
    [10] BESSER L M, DANNENBERG A L. Walking to public transit: steps to help meet physical activity recommendations[J]. American Journal of Preventive Medicine, 2005, 29 (4): 273-280. doi: 10.1016/j.amepre.2005.06.010
    [11] FU Xue-mei, JUAN Zhi-cai. Understanding public transit use behavior: integration of the theory of planned behavior and the customer satisfaction theory[J]. Transportation, 2017, 44 (5): 1021-1042. doi: 10.1007/s11116-016-9692-8
    [12] NASSIR N, HICKMAN M, MA Zhen-liang. Activity detection and transfer identification for public transit fare card data[J]. Transportation, 2015, 42 (4): 683-705. doi: 10.1007/s11116-015-9601-6
    [13] BAGCHI M, WHITE P R. The potential of public transport smart card data[J]. Transport Policy, 2005, 12 (5): 464-474. doi: 10.1016/j.tranpol.2005.06.008
    [14] 吴祥国. 基于公交IC卡和GPS数据的居民公交出行OD矩阵推导与应用[D]. 济南: 山东大学, 2011.

    WU Xiang-guo. Urban public transportation trip OD matrix inference and application based on bus IC card data and GPS data[D]. Jinan: Shandong University, 2011. (in Chinese).
    [15] ALSGER A A, MESBAH M, FERREIRA L, et al. Use of smart card fare data to estimate public transport origindestination matrix[J]. Transportation Research Record, 2015 (2535): 88-96.
    [16] ALI A, KIM J, LEE S, Travel behavior analysis using smart card data[J]. KSCE Journal of Civil Engineering, 2016, 20 (4): 1532-1539.
    [17] FARBER S, FU Li-wei. Dynamic public transit accessibility using travel time cubes: comparing the effectsof infrastructure (dis) investments over time[J]. Computers, Environment and Urban Systems, 2017, 62: 30-40. doi: 10.1016/j.compenvurbsys.2016.10.005
    [18] BACHAND-MARLEAU J, LEE B H Y, EL-GENEIDY A M. Better understanding of factors influencing likelihood of using shared bicycle systems and frequency of use[J]. Transportation Research Record, 2012 (2314): 66-71.
    [19] MOHANTY S, BANSAL S, BAIRWA K. Effect of integration of bicyclists and pedestrians with transit in New Delhi[J]. Transport Policy, 2017, 57: 31-40. doi: 10.1016/j.tranpol.2017.03.019
    [20] AGARD B, MORENCY C, TRÉPANIER M. Mining public transport user behaviour from smart card data[J]. IFAC Proceedings Volumes, 2006, 39 (3): 399-404.
    [21] 龙瀛, 张宇, 崔承印. 利用公交刷卡数据分析北京职住关系和通勤出行[J]. 地理学报, 2012, 67 (10): 1339-1352. doi: 10.11821/xb201210005

    LONG Ying, ZHANG Yu, CUI Cheng-yin. Identifying commuting pattern of beijing using bus smart card data[J]. Acta Geographica Sinica, 2012, 67 (10): 1339-1352. (in Chinese). doi: 10.11821/xb201210005
    [22] TAO Sui, ROHDE D, CORCORAN J. Examining the spatialtemporal dynamics of bus passenger travel behavior using smart card data and the flow-comap[J]. Journal of Transport Geography, 2014, 41: 21-36. doi: 10.1016/j.jtrangeo.2014.08.006
    [23] CHO S, LEE W D, HWANG J H, et al. Validation of activity-based travel demand model using smart-card data in Seoul, South Korea[J]. Procedia Computer Science, 2015, 52: 707-712. doi: 10.1016/j.procs.2015.05.080
    [24] GUERRA E. Mexico City's suburban land use and transit connection: the effects of the Line B Metro expansion[J]. Transport Policy, 2014, 32: 105-114. doi: 10.1016/j.tranpol.2013.12.011
    [25] WANG Zi-jia, LIU Yan, CHEN Feng. Evaluation and improvement of the interchange from bus to metro using smart card data and GIS[J]. Journal of Urban Planning and Development, 2018, 144 (2): 1-8.
    [26] MISHRA S, WELCH T F, TORRENS P M, et al. A tool for measuring and visualizing connectivity of transit stop, route and transfer center in a multimodal transportation network[J]. Public Transport, 2015, 7 (1): 77-99. doi: 10.1007/s12469-014-0091-2
    [27] 王宁, 杜豫川. 社区居民适宜步行距离阈值研究[J]. 交通运输研究, 2015, 1 (2): 20-24, 30. https://www.cnki.com.cn/Article/CJFDTOTAL-JTBH201502004.htm

    WANG Ning, DU Yu-chuan. Resident walking distance threshold of community[J]. Transport Research, 2015, 1 (2): 20-24, 30. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JTBH201502004.htm
    [28] BOHANNON R W. Comfortable and maximum walking speed of adults aged 20-79 years: reference values and determinants[J]. Age and Ageing, 1997, 26 (1): 15-19. doi: 10.1093/ageing/26.1.15
    [29] ASAKURA Y, IRYO T, NAKAJIMA Y, et al. Estimation of behavioural change of railway passengers using smart card data[J]. Public Transport, 2012, 4 (1): 1-16. doi: 10.1007/s12469-011-0050-0
    [30] ALSGER A, ASSEMI B, MESBAH M, et al. Validating and improving public transport origin-destination estimation algorithm using smart card fare data[J]. Transportation Research Part C: Emerging Technologies, 2016, 68: 490-506. doi: 10.1016/j.trc.2016.05.004
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  705
  • HTML全文浏览量:  138
  • PDF下载量:  572
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-12
  • 刊出日期:  2018-10-25

目录

    /

    返回文章
    返回