留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于灰色系统理论的高寒盐沼泽区混凝土耐久性评估

冯忠居 陈思晓 徐浩 姚贤华

冯忠居, 陈思晓, 徐浩, 姚贤华. 基于灰色系统理论的高寒盐沼泽区混凝土耐久性评估[J]. 交通运输工程学报, 2018, 18(6): 18-26. doi: 10.19818/j.cnki.1671-1637.2018.06.003
引用本文: 冯忠居, 陈思晓, 徐浩, 姚贤华. 基于灰色系统理论的高寒盐沼泽区混凝土耐久性评估[J]. 交通运输工程学报, 2018, 18(6): 18-26. doi: 10.19818/j.cnki.1671-1637.2018.06.003
FENG Zhong-ju, CHEN Si-xiao, XU Hao, YAO Xian-hua. Durability evaluation of concrete in alpine salt marsh area based on gray system theory[J]. Journal of Traffic and Transportation Engineering, 2018, 18(6): 18-26. doi: 10.19818/j.cnki.1671-1637.2018.06.003
Citation: FENG Zhong-ju, CHEN Si-xiao, XU Hao, YAO Xian-hua. Durability evaluation of concrete in alpine salt marsh area based on gray system theory[J]. Journal of Traffic and Transportation Engineering, 2018, 18(6): 18-26. doi: 10.19818/j.cnki.1671-1637.2018.06.003

基于灰色系统理论的高寒盐沼泽区混凝土耐久性评估

doi: 10.19818/j.cnki.1671-1637.2018.06.003
基金项目: 

青海省交通科技攻关项目 2014-07

海南省交通科技项目 HNZXY2015-045R

详细信息
    作者简介:

    冯忠居(1965-), 男, 山西万荣人, 长安大学教授, 工学博士, 从事岩土工程研究

    通讯作者:

    陈思晓(1984-), 男, 福建惠安人, 长安大学工学博士研究生

  • 中图分类号: U443.15

Durability evaluation of concrete in alpine salt marsh area based on gray system theory

More Information
    Author Bio:

    FENG Zhong-ju(1965-), male, professor, PhD, ysf@gl.chd.edu.cn

    Corresponding author: CHEN Si-xiao(1984-), male, doctoralstudent, csx985@163.com
  • 摘要: 依托青海省德香高速工程, 通过混凝土室内损伤试验, 分析了冻融干湿循环和盐腐蚀耦合作用下混凝土动弹性模量的演化过程与特征; 基于灰色系统理论, 建立了不同工况下混凝土相对动弹性模量GM (1, 1) 预测模型, 预测了2种损伤条件下3种配合比混凝土耐久年限; 依据室内损伤试验与灰色系统理论GM (1, 1) 模型预测结果分析了混凝土的组分, 研究了不同掺合料对混凝土耐久性的影响。研究结果表明: 混凝土耐久性GM (1, 1) 预测模型的相对误差在6%以内, 且后验差比值小于0.35, 小概率误差大于0.95, 预测精度较高; 不同使用环境对混凝土耐久性影响差异较大, 复合盐腐蚀-养护冻融循环的影响程度较复合盐腐蚀-浸泡冻融循环提高了42.8%~46.2%;掺加了粉煤灰、硅灰与膨胀剂的配合比Ⅲ的混凝土耐久性最好, 耐久年限较基准配合比混凝土提高了50%以上, 因此, 为了保证混凝土耐久性, 在类似地区工程实践中, 可参考配合比Ⅲ进行现场混凝土配比设计; 粉煤灰与矿渣同时使用将会生成钙矾石, 相比基准配合比, 不同配合比下混凝土耐久年限降低率均在50%以上, 严重损伤混凝土耐久性。

     

  • 图  1  高寒盐沼泽区桥墩腐蚀

    Figure  1.  Corroded piers in alpine salt marsh area

    图  2  侵蚀溶液中混凝土试件

    Figure  2.  Concrete specimens immersed in erosion solution

    图  3  快速冻融试验机

    Figure  3.  Rapid freezing-thawing tester

    图  4  混凝土动弹模测定仪

    Figure  4.  Tester of concrete dynamic elastic modulus

    图  5  不同工况下混凝土相对动弹性模量

    Figure  5.  Relative dynamic elastic moduli of concrete under different working conditions

    图  6  不同工况下混凝土耐损坏次数

    Figure  6.  Damage resistances of concrete under different working conditions

    表  1  室内试验条件

    Table  1.   Laboratory test conditions

    下载: 导出CSV

    表  2  C30混凝土配合比

    Table  2.   Mix proportions of C30concrete

    下载: 导出CSV

    表  3  混凝土材料参数[14]

    Table  3.   Parameters of concrete materials

    下载: 导出CSV

    表  4  不同工况下混凝土相对动弹性模量实测值与一次累加值

    Table  4.   Measured values and primary accumulated values of relative dynamic elastic modulus of concrete under different working conditions

    下载: 导出CSV

    表  5  不同工况下混凝土相对动弹性模量预测模型

    Table  5.   Prediction models of relative dynamic elastic modulus of concrete under different working conditions

    下载: 导出CSV

    表  6  模型精度分级

    Table  6.   Model accuracy classification

    下载: 导出CSV

    表  7  不同工况下混凝土相对动弹性模量预测模型精度参数

    Table  7.   Precision parameters of prediction models of relative dynamic elastic modulus of concrete under different working conditions

    下载: 导出CSV

    表  8  复合盐腐蚀-养护冻融条件下混凝土相对动弹性模量预测结果

    Table  8.   Prediction results of relative dynamic elastic modulus of concrete under composite salt corrosion and curing freezing-thawing condition

    下载: 导出CSV

    表  9  复合盐腐蚀-浸泡冻融条件下混凝土相对动弹性模量预测结果

    Table  9.   Prediction results of relative dynamic elastic modulus of concrete under composite salt corrosion and immersion freezing-thawing condition

    下载: 导出CSV

    表  10  0不同工况下混凝土相对动弹性模量预测结果

    Table  10.   Prediction results of relative dynamic elastic modulus of concrete under different working conditions

    下载: 导出CSV

    表  11  1不同工况下混凝土耐久年限预测结果

    Table  11.   Prediction results of durability of concrete under different working conditions

    下载: 导出CSV
  • [1] WU Yi-ping, PARKER F, KANDHAL K. Aggregate toughness/abrasion resistance and durability/soundness tests related to asphalt concrete performance in pavements[R]. Auburn: Auburn University, 1998.
    [2] LUCHKO I I. A method for the evaluation of the durability of reinforced-concrete structures from the viewpoint of fracture mechanics[J]. Materials Science, 2001, 37 (6): 940-954. doi: 10.1023/A:1015653509967
    [3] ANDRADE C, ALONSO C, SARRIA J. Corrosion rate evolution in concrete structures exposed to the atmosphere[J]. Cement and Concrete Composites, 2002, 24 (1): 55-64. doi: 10.1016/S0958-9465(01)00026-9
    [4] 金伟良, 赵羽习. 混凝土结构耐久性研究的回顾与展望[J]. 浙江大学学报: 工学版, 2002, 36 (4): 371-380, 403. doi: 10.3785/j.issn.1008-973X.2002.04.006

    JIN Wei-liang, ZHAO Yu-xi. State-of-the-art on durability of concrete structures[J]. Journal of Zhejiang University: Engineering Science, 2002, 36 (4): 371-380, 403. (in Chinese). doi: 10.3785/j.issn.1008-973X.2002.04.006
    [5] 张宝胜, 干伟忠, 陈涛. 杭州湾跨海大桥混凝土结构耐久性解决方案[J]. 土木工程学报, 2006, 39 (6): 72-77. doi: 10.3321/j.issn:1000-131X.2006.06.013

    ZHANG Bao-sheng, GAN Wei-zhong, CHEN Tao. Strategies to ensure durability of concrete structure for Hangzhou Bay Bridge[J]. China Civil Engineering Journal, 2006, 39 (6): 72-77. (in Chinese). doi: 10.3321/j.issn:1000-131X.2006.06.013
    [6] MOOM H Y, SHIN D G, CHOI D S. Evaluation of the durability of mortar and concrete applied with inorganic coating material and surface treatment system[J]. Construction and Building Materials, 2007, 21 (2): 362-369. doi: 10.1016/j.conbuildmat.2005.08.012
    [7] GE Xue-liang, FANG Kun-he, ZENG Li, et al. Properties of leakage corrosion of concrete and its durability[J]. Journal of Wuhan University of Technology-Materials: Science Edition, 2008, 23 (6): 946-949. doi: 10.1007/s11595-007-6946-5
    [8] 陈妤, 刘荣桂, 蔡东升, 等. 冻融与氯盐侵蚀作用下预应力结构耐久性试验及数值模拟[J]. 建筑结构学报, 2010, 31 (2): 104-110. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201002014.htm

    CHEN Yu, LIU Rong-gui, CAI Dong-sheng, et al. Durability test and numerical analysis of prestressed structures with cyclic freeze-thaw subjoining chloride attack[J]. Journal of Building Structures, 2010, 31 (2): 104-110. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201002014.htm
    [9] 武海荣, 金伟良, 延永东, 等. 混凝土冻融环境区划与抗冻性寿命预测[J]. 浙江大学学报: 工学版, 2012, 46 (4): 650-657. doi: 10.3785/j.issn.1008-973X.2012.04.012

    WU Hai-rong, JIN Wei-liang, YAN Yong-dong, et al. Environmental zonation and life prediction of concrete in frost environments[J]. Journal of Zhejiang University: Engineering Science, 2012, 46 (4): 650-657. (in Chinese). doi: 10.3785/j.issn.1008-973X.2012.04.012
    [10] 陈晓斌, 唐孟雄, 马昆林. 地下混凝土结构硫酸盐及氯盐侵蚀的耐久性实验[J]. 中南大学学报: 自然科学版, 2012, 43 (7): 2803-2812. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201207050.htm

    CHEN Xiao-bin, TANG Meng-xiong, MA Kun-lin. Underground concrete structure exposure to sulfate and chloride invading environment[J]. Journal of Central South University: Science and Technology, 2012, 43 (7): 2803-2812. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201207050.htm
    [11] 杨绿峰, 周明, 陈正. 海洋混凝土结构耐久性定量分析与设计[J]. 土木工程学报, 2014, 47 (10): 70-79. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201410011.htm

    YANG Lyu-feng, ZHOU Ming, CHNE Zheng. Quantitative analysis and design for durability of marine concrete structures[J]. China Civil Engineering Journal, 2014, 47 (10): 70-79. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201410011.htm
    [12] 李富民, 邓天慈, 王江浩, 等. 预应力混凝土结构耐久性研究综述[J]. 建筑科学与工程学报, 2015, 32 (2): 1-20. doi: 10.3969/j.issn.1673-2049.2015.02.001

    LI Fu-min, DENG Tian-ci, WANG Jiang-hao, et al. Review of research on durability of prestressed concrete structures[J]. Journal of Architecture and Civil Engineering, 2015, 32 (2): 1-20. (in Chinese). doi: 10.3969/j.issn.1673-2049.2015.02.001
    [13] 姚贤华, 冯忠居, 王富春, 等. 盐沼泽环境下公路桥梁桩基材料耐腐蚀试验[J]. 长安大学学报: 自然科学版, 2018, 38 (1): 49-58. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201801008.htm

    YAO Xian-hua, FENG Zhong-ju, WANG Fu-chun, et al. Experiment on erosion resistance of highway bridge pile foundation material under salt marshes environment[J]. Journal of Chang'an University: Natural Science Edition, 2018, 38 (1): 49-58. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201801008.htm
    [14] 姚贤华, 冯忠居, 管俊峰, 等. 不同掺合料对盐碱腐蚀条件下干湿循环后混凝土性能的影响[J]. 工业建筑, 2018, 48 (3): 6-10, 30. https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ201803002.htm

    YAO Xian-hua, FENG Zhong-ju, GUAN Jun-feng, et al. Influences of different admixtures on characteristics of concrete after drying-wetting cycle under the saline corrosion[J]. Industrial Construction, 2018, 48 (3): 6-10, 30. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ201803002.htm
    [15] 李镜培, 李林, 陈浩华, 等. 腐蚀环境中混凝土桩基耐久性研究进展[J]. 哈尔滨工业大学学报, 2017, 49 (12): 1-15. doi: 10.11918/j.issn.0367-6234.201708027

    LI Jing-pei, LI Lin, CHEN Hao-hua, et al. Advances in concrete pile durability in corrosive environment[J]. Journal of Harbin Institute of Technology, 2017, 49 (12): 1-15. (in Chinese). doi: 10.11918/j.issn.0367-6234.201708027
    [16] 王成, 葛广华, 侯建国, 等. 南疆地区混凝土结构耐久性现状与影响因素研究[J]. 武汉大学学报: 工学版, 2017, 50 (3): 447-453. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201703020.htm

    WANG Cheng, GE Guang-hua, HOU Jian-guo, et al. Study of durability of concrete structures and its influencing factors in south region of Xinjiang[J]. Engineering Journal of Wuhan University, 2017, 50 (3): 447-453. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201703020.htm
    [17] HAO Lu-cen, LIU Yuan-zhen, WANG Wen-jing, et al. Effect of salty freeze-thaw cycles on durability of thermal insulation concrete with recycled aggregates[J]. Construction and Building Materials, 2018, 189: 478-486. doi: 10.1016/j.conbuildmat.2018.09.033
    [18] 蒋卫东, 陈啸, 闫俊, 等. 盐渍地区抗腐蚀混凝土耐久性试验研究[J]. 东北大学学报: 自然科学版, 2008, 29 (2): 280-283. doi: 10.3321/j.issn:1005-3026.2008.02.033

    JIANG Wei-dong, CHEN Xiao, YAN Jun, et al. Durability of the corrosion-resistant concrete in saline soil area[J]. Journal of Northeastern University: Natural Science, 2008, 29 (2): 280-283. (in Chinese). doi: 10.3321/j.issn:1005-3026.2008.02.033
    [19] 乔頔, 夏文俊, 赵阳, 等. 连云港盐渍土中混凝土耐久性研究[J]. 岩土工程学报, 2010, 32 (增2): 611-614. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2010S2150.htm

    QIAO Di, XIA Wen-jun, ZHAO Yang, et al. Durability of concrete in saline soil in Lianyungang[J]. Chinese Journal of Geotechnical Engineering, 2010, 32 (S2): 611-614. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2010S2150.htm
    [20] 杨钱荣, 杨全兵. 含钢渣复合掺合料对混凝土耐久性的影响[J]. 同济大学学报: 自然科学版, 2010, 38 (8): 1200-1204. doi: 10.3969/j.issn.0253-374x.2010.08.018

    YANG Qian-rong, YANG Quan-bing. Effects of compound mineral admixture with steel slag on durability of concrete[J]. Journal of Tongji University: Natural Science, 2010, 38 (8): 1200-1204. (in Chinese). doi: 10.3969/j.issn.0253-374x.2010.08.018
    [21] 金伟良, 李志远, 许晨. 基于相对信息熵的混凝土结构寿命预测方法[J]. 浙江大学学报: 工学版, 2012, 46 (11): 1991-1997. doi: 10.3785/j.issn.1008-973X.2012.11.009

    JIN Wei-liang, LI Zhi-yuan, XU Chen. Life prediction method of concrete structures based on relativistic information entropy[J]. Journal of Zhejiang University: Engineering Science, 2012, 46 (11): 1991-1997. (in Chinese). doi: 10.3785/j.issn.1008-973X.2012.11.009
    [22] 蒋萌, 蔡宁生, 寇新建, 等. 氯盐腐蚀环境下混凝土结构耐久性检测技术及研究[J]. 混凝土, 2013 (6): 22-24, 28. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201306007.htm

    JIANG Meng, CAI Ning-sheng, KOU Xin-jian, et al. Testing technology and study of concrete structure durability under chlorine salt corrosion environment[J]. Concrete, 2013 (6): 22-24, 28. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201306007.htm
    [23] DIAO Bo, ZHANG Jian, YE Ying-hua, et al. Effects of freezethaw cycles and seawater corrosion on the behavior of reinforced air-entrained concrete beams with persistent loads[J]. Journal of Cold Regions Engineering, 2013, 27 (1): 44-53. doi: 10.1061/(ASCE)CR.1943-5495.0000052
    [24] 宿晓萍, 王清, 王文华, 等. 季节冻土区盐渍土环境下混凝土抗冻耐久性机理[J]. 吉林大学学报: 地球科学版, 2014, 44 (4): 1244-1253. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201404018.htm

    SU Xiao-ping, WANG Qing, WANG Wen-hua, et al. Frost resistance and durability mechanism of concrete under salinealkali condition in seasonal frozen soil area[J]. Journal of Jilin University: Earth Science Edition, 2014, 44 (4): 1244-1253. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201404018.htm
    [25] MING Feng, DU Cheng-cheng, LIU Yu-hang, et al. Concrete durability under different circumstances based on multi-factor effects[J]. Sciences in Cold and Arid Regions, 2017, 9 (4): 384-391.
    [26] BASTIDAS-ARTEAGA E. Reliability of reinforced concrete structures subjected to corrosion-fatigue and climate change[J]. International Journal of Concrete Structuresand Materials, 2018, 12 (1): 77-89. doi: 10.1186/s40069-018-0323-y
    [27] KIM I S, CHOI S Y, YANG E I. Evaluation of durability of concrete substituted heavyweight waste glass as fine aggregate[J]. Construction and Building Materials, 2018, 184: 269-277. doi: 10.1016/j.conbuildmat.2018.06.221
    [28] 陈景星. 高速公路梁桥加宽桩基础沉降差异控制技术研究[D]. 西安: 长安大学, 2013.

    CHEN Jing-xing. Research on differential settlement control technology of pile foundation used in widenned beam bridge for expressway widenning[D]. Xi'an: Chang'an University, 2013. (in Chinese).
    [29] 郑扬. 盐沼泽腐蚀区桥梁桩基竖向承载特性分析及其防腐技术研究[D]. 西安: 长安大学, 2015.

    ZHENG Yang. Analysis of the pile foundation vertical bearing characteristic in salt marsh area and research on its anticorrosive[D]. Xi'an: Chang'an University, 2015. (in Chinese).
    [30] 徐存东, 刘辉, 聂俊坤, 等. 受侵蚀混凝土耐久性衰减影响因素试验研究[J]. 混凝土, 2015 (3): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201503002.htm

    XU Cun-dong, LIU Hui, NIE Jun-kun, et al. Experimental study on the impact factors of the attenuation of eroded concrete durability[J]. Concrete, 2015 (3): 1-4. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201503002.htm
    [31] 庄磊. 灰色系统理论GM (1, 1) 模型在高层建筑沉降观测中的应用[J]. 价值工程, 2018, 37 (15): 200-201. https://www.cnki.com.cn/Article/CJFDTOTAL-JZGC201815086.htm

    ZHUANG Lei. Application of grey system theory GM (1, 1) model in settlement observation of high-rise buildings[J]. Value Engineering, 2018, 37 (15): 200-201. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZGC201815086.htm
    [32] 韩龙武, 蔡汉成, 程佳, 等. 莫斯科-喀山高速铁路沿线季节性冻土冻融特征[J]. 交通运输工程学报, 2018, 18 (3): 44-55. http://transport.chd.edu.cn/article/id/201803005

    HAN Long-wu, CAI Han-cheng, CHENG Jia, et al. Freezing and thawing characteristics of seasonal frozen soil along Moscow-Kazan High-Speed Railway[J]. Journal of Traffic and Transportation Engineering, 2018, 18 (3): 44-55. (in Chinese). http://transport.chd.edu.cn/article/id/201803005
  • 加载中
图(6) / 表(11)
计量
  • 文章访问数:  710
  • HTML全文浏览量:  142
  • PDF下载量:  379
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-21
  • 刊出日期:  2018-12-25

目录

    /

    返回文章
    返回