留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

盾构隧道斜螺栓接头受力性能与火灾下温度分布规律

张稳军 张新新 宋晓龙

张稳军, 张新新, 宋晓龙. 盾构隧道斜螺栓接头受力性能与火灾下温度分布规律[J]. 交通运输工程学报, 2018, 18(6): 37-49. doi: 10.19818/j.cnki.1671-1637.2018.06.005
引用本文: 张稳军, 张新新, 宋晓龙. 盾构隧道斜螺栓接头受力性能与火灾下温度分布规律[J]. 交通运输工程学报, 2018, 18(6): 37-49. doi: 10.19818/j.cnki.1671-1637.2018.06.005
ZHANG Wen-jun, ZHANG Xin-xin, SONG Xiao-long. Mechanical properties of shield tunnel with inclined bolt joint and temperature distribution law under fire[J]. Journal of Traffic and Transportation Engineering, 2018, 18(6): 37-49. doi: 10.19818/j.cnki.1671-1637.2018.06.005
Citation: ZHANG Wen-jun, ZHANG Xin-xin, SONG Xiao-long. Mechanical properties of shield tunnel with inclined bolt joint and temperature distribution law under fire[J]. Journal of Traffic and Transportation Engineering, 2018, 18(6): 37-49. doi: 10.19818/j.cnki.1671-1637.2018.06.005

盾构隧道斜螺栓接头受力性能与火灾下温度分布规律

doi: 10.19818/j.cnki.1671-1637.2018.06.005
基金项目: 

国家自然科学基金项目 51778412

详细信息
    作者简介:

    张稳军(1975-), 男, 甘肃平凉人, 天津大学副教授, 工学博士, 从事隧道与地下工程施工及设计新理论研究

  • 中图分类号: U455.43

Mechanical properties of shield tunnel with inclined bolt joint and temperature distribution law under fire

More Information
  • 摘要: 利用有限元计算软件ABAQUS建立了环向复合管片与环向斜螺栓接头的三维实体模型; 考虑复合管片材料的非线性, 采用弹塑性本构模型, 分析了环向斜螺栓接头在常温下的力学特性; 根据HC升温曲线, 分析了接头模型的传热特性, 研究了复合管片衬砌和环向斜螺栓接头在火灾下的温度分布规律。分析结果表明: 采用高强螺栓能够有效减小接头张开量, 增大接头刚度; 在采用高强螺栓的情况下, 斜螺栓最大轴应力易在初始阶段达到屈服, 屈服后接头弯矩和轴力的增大对斜螺栓的应力影响并不大, 但对斜螺栓变形影响较大, 当接头负弯矩从7 kN·m增加到122 kN·m, 接头轴力从368kN增加到734 kN时, 斜螺栓最大应变增加1.6倍, 当接头正弯矩从53 kN·m增加到182 kN·m, 接头轴力从903kN增加到1 056 kN时, 斜螺栓最大应变增加5.9倍; 常温下接缝附近斜螺栓的轴应力呈现反对称分布, 除接缝外其他部位斜螺栓的轴应力基本相等, 约为400MPa, 接缝处轴应力绝对值最大值可达700 MPa; 火灾情况下手孔处温度上升最快且达到的温度最高, 80 min时即可达到1 000 ℃, 接缝处混凝土在100min后达到稳定温度, 螺母处混凝土在150 min后达到稳定温度, 稳定温度均为1 000 ℃左右。

     

  • 图  1  管片与接头尺寸和构造(单位: mm)

    Figure  1.  Size and structure of segments and joints (unit: mm)

    图  2  模型装配

    Figure  2.  Model assembly

    图  3  复合管片钢板和混凝土构造

    Figure  3.  Steel plate and concrete structure of composite segment

    图  4  混凝土压应力-应变曲线

    Figure  4.  Compressive stress-strain curve of concrete

    图  5  螺栓应力-应变曲线

    Figure  5.  Stress-strain curve of bolt

    图  6  管片与螺栓网格划分

    Figure  6.  Mesh generation of segment and bolt

    图  7  斜螺栓上侧各节点轴应力

    Figure  7.  Axial stresses of joint on upside of inclined bolt

    图  8  负弯矩下接头弯矩和轴力

    Figure  8.  Bending moments and axial forces of joints under negative bending moment

    图  9  负弯矩下斜螺栓最大轴力和最大轴力截面平均应力

    Figure  9.  Maximum axial forces and average stresses of maximum axial force section of inclined bolt under negative bending moment

    图  10  负弯矩下斜螺栓最大应力和最大应变

    Figure  10.  Maximum stresses and maximum strains of inclined bolt under negative bending moment

    图  11  负弯矩下接头张开量和错台量

    Figure  11.  Joint openings and stagger quantities under negative bending moment

    图  12  正弯矩下接头弯矩和轴力

    Figure  12.  Bending moments and axial forces of joints under positive bending moment

    图  13  正弯矩下斜螺栓最大轴力和最大轴力截面平均应力

    Figure  13.  Maximum axial forces and average stresses of maximum axial force section of inclined bolt under positive bending moment

    图  14  正弯矩下斜螺栓最大应力和最大应变

    Figure  14.  Maximum stresses and maximum strains of inclined bolt under positive bending moment

    图  15  正弯矩下管片接头张开量和错台量

    Figure  15.  Joint openings and stagger quantities under positive bending moment

    图  16  斜螺栓轴应力分布

    Figure  16.  Axial stress distributions of inclined bolt

    图  17  斜螺栓轴应力沿轴线变化曲线

    Figure  17.  Axial stress change curves along axis of inclined bolt

    图  18  混凝土导热系数与温度关系

    Figure  18.  Relationship between thermal conductivity and temperature of concrete

    图  19  混凝土比热容与温度关系

    Figure  19.  Relationship between specific heat capacity and temperature of concrete

    图  20  钢的导热系数与温度关系

    Figure  20.  Relationship between thermal conductivity and temperature of steel

    图  21  钢的比热容与温度关系

    Figure  21.  Relationship between specific heat capacity and temperature of steel

    图  22  HC升温曲线

    Figure  22.  Heating up curve of HC

    图  23  对流换热系数曲线

    Figure  23.  Curve of convective heat transfer coefficient

    图  24  管片温度分布

    Figure  24.  Distribution of segment temperature

    图  25  接头温度分布

    Figure  25.  Distribution of joint temperature

    图  26  螺母、手孔和接缝温度曲线

    Figure  26.  Temperature curves of nut, hand hole and seam

    图  27  斜螺栓沿轴线各节点温度随受热时间变化曲线

    Figure  27.  Temperature variation curves of each node along axis of inclined bolt with heating time

    图  28  斜螺栓沿轴线各节点温度随距螺母端距离变化曲线

    Figure  28.  Temperature variation curves of each node along axis of inclined bolt with distance from nut

    表  1  管片模型几何参数

    Table  1.   Geometric parameters of segment model mm

    下载: 导出CSV

    表  2  钢板和混凝土材料参数

    Table  2.   Material parameters of steel plate and concrete

    下载: 导出CSV

    表  3  接头螺栓参数

    Table  3.   Parameters of joint bolt

    下载: 导出CSV
  • [1] 叶飞, 陈治, 苟长飞, 等. 基于球孔扩张的盾构隧道壁后注浆压密模型[J]. 交通运输工程学报, 2014, 14 (1): 35-42. doi: 10.3969/j.issn.1671-1637.2014.01.007

    YE Fei, CHEN Zhi, GOU Chang-fei, et al. Back-filled grouting compaction model of shield tunnel based on spherical cavity expansion[J]. Journal of Traffic and Transportation Engineering, 2014, 14 (1): 35-42. (in Chinese). doi: 10.3969/j.issn.1671-1637.2014.01.007
    [2] ZHANG Wen-jun, WANG J H, JIN Ming-ming, et al. Numerical analysis of DRC segment under inner water pressure based on full-scale test verification for shield tunnel[J]. Tunnelling and Underground Space Technology, 2016, 56: 157-167. doi: 10.1016/j.tust.2016.03.010
    [3] ZHANG Wen-jun, KOIZUMI A. Behavior of composite segment for shield tunnel[J]. Tunnelling and Underground Space Technology, 2010, 25 (4): 325-332. doi: 10.1016/j.tust.2010.01.007
    [4] 罗超. 盾构隧道管片接头高温力学行为与结构剩余承载力研究[D]. 长沙: 中南大学, 2014.

    LUO Chao. A study on mechanical behaviors of shield tunnel segment joint and structural residual capacity under fire scenarios[D]. Changsha: Central South University, 2014. (in Chinese).
    [5] ZHANG Wen-jun, KOIZUMI A. A study of the localized bearing capacity of reinforced concrete K-segment[J]. Tunnelling and Underground Space Technology, 2007, 22 (4): 467-473. doi: 10.1016/j.tust.2006.08.001
    [6] 赵武胜, 陈卫忠, 杨帆. 盾构隧道管片混凝土接触面力学性能研究[J]. 现代隧道技术, 2015, 52 (3): 119-126. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201503018.htm

    ZHAO Wu-sheng, CHEN Wei-zhong, YANG Fan. Study of the interface mechanical properties of concrete segments in shield tunnels[J]. Modern Tunnelling Technology, 2015, 52 (3): 119-126. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201503018.htm
    [7] 孟振江, 彭建兵, 黄强兵, 等. 三类勘察场地地裂缝活动对地铁隧道的影响[J]. 交通运输工程学报, 2017, 17 (2): 41-51. doi: 10.3969/j.issn.1671-1637.2017.02.005

    MENG Zhen-jiang, PENG Jian-bing, HUANG Qiang-bing, et al. Influence of ground fissure activity on subway tunnel in third-kind surveying site[J]. Journal of Traffic and Transportation Engineering, 2017, 17 (2): 41-51. (in Chinese). doi: 10.3969/j.issn.1671-1637.2017.02.005
    [8] 强健. 地铁隧道衬砌结构火灾损伤与灾后评估方法研究[D]. 上海: 同济大学, 2007.

    QIANG Jian. A study on fire damage to subway tunnel lining and evaluation method after fire scenarios[D]. Shanghai: Tongji University, 2007. (in Chinese).
    [9] 师永翔, 赵武胜. 大直径盾构隧道管片接头抗弯性能研究[J]. 现代隧道技术, 2013, 50 (1): 115-122, 133. doi: 10.3969/j.issn.1009-6582.2013.01.019

    SHI Yong-xiang, ZHAO Wu-sheng. Research on flexural rigidity of the segment joint of a large-diameter shield tunnel[J]. Modern Tunnelling Technology, 2013, 50 (1): 115-122, 133. (in Chinese). doi: 10.3969/j.issn.1009-6582.2013.01.019
    [10] 朱合华, 崔茂玉, 杨金松. 盾构衬砌管片的设计模型与荷载分布的研究[J]. 岩土工程学报, 2000, 22 (2): 190-194. doi: 10.3321/j.issn:1000-4548.2000.02.009

    ZHU He-hua, CUI Mao-yu, YANG Jin-song. Design model for shield lining segments and distribution of load[J]. Chinese Journal of Geotechnical Engineering, 2000, 22 (2): 190-194. (in Chinese). doi: 10.3321/j.issn:1000-4548.2000.02.009
    [11] 张冬梅, 樊振宇, 黄宏伟. 考虑接头力学特性的盾构隧道衬砌结构计算方法研究[J]. 岩土力学, 2010, 31 (8): 2546-2552. doi: 10.3969/j.issn.1000-7598.2010.08.033

    ZHANG Dong-mei, FAN Zhen-yu, HUANG Hong-wei. Calculation method of shield tunnel lining considering mechanical characteristics of joints[J]. Rock and Soil Mechanics, 2010, 31 (8): 2546-2552. (in Chinese). doi: 10.3969/j.issn.1000-7598.2010.08.033
    [12] 董新平, 解枫赞. 一类盾构管片接头破坏历程的解析解[J]. 岩土工程学报, 2013, 35 (10): 1870-1875. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201310017.htm

    DONG Xin-ping, XIE Feng-zan. Analytical solution of segment joint model for segmented tunnel lining[J]. Chinese Journal of Geotechnical Engineering, 2013, 35 (10): 1870-1875. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201310017.htm
    [13] 张稳军, 张新新, 张云旆. 斜螺栓等级对盾构隧道接头受力和变形的影响[J]. 地下空间与工程学报, 2018, 14 (增1): 227-234. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2018S1034.htm

    ZHANG Wen-jun, ZHANG Xin-xin, ZHANG Yun-pei. Influence of inclined bolt grade on bearing capacity and deformation of shield tunnel joint[J]. Chinese Journal of Underground Space and Engineering, 2018, 14 (S1): 227-234. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2018S1034.htm
    [14] 张稳军, 张高乐, 雷华阳. 基于塑性损伤的盾构隧道FRP-key接头抗剪性能及布置方式合理性研究[J]. 中国公路学报, 2017, 30 (8): 38-48. doi: 10.3969/j.issn.1001-7372.2017.08.004

    ZHANG Wen-jun, ZHANG Gao-le, LEI Hua-yang. Research on shear performance of FRP-key joint for shield tunnel and rationality of arrangement based on plastic-damage model[J]. China Journal of Highway and Transport, 2017, 30 (8): 38-48. (in Chinese). doi: 10.3969/j.issn.1001-7372.2017.08.004
    [15] ABANTO J, REGGIO M, BARRERO D, et al. Prediction of fire and smoke propagation in an underwater tunnel[J]. Tunnelling and Underground Space Technology, 2007, 22 (1): 90-95. doi: 10.1016/j.tust.2005.10.006
    [16] MIGOYA E, CRESPO A, GARCLA J, et al. A simplified model of fires in road tunnels. Comparison with threedimensional models and full-scale measurements[J]. Tunnelling and Underground Space Technology, 2009, 24 (1): 37-52. doi: 10.1016/j.tust.2008.01.006
    [17] YAN Zhi-guo, ZHU He-hua, JU J W. Behavior of reinforced concrete and steel fiber reinforced concrete shield TBM tunnel linings exposed to high temperatures[J]. Construction and Building Materials, 2013, 38: 610-618. doi: 10.1016/j.conbuildmat.2012.09.019
    [18] YAN Zhi-guo, SHEN Yi, ZHU He-hua, et al. Experimental study of tunnel segmental joints subjected to elevated temperature[J]. Tunnelling and Underground Space Technology, 2016, 53: 46-60. doi: 10.1016/j.tust.2016.01.005
    [19] 闫治国. 隧道衬砌结构火灾高温力学行为及耐火方法研究[D]. 上海: 同济大学, 2007.

    YAN Zhi-guo. A study on mechanical behaviors and fireproof methods of tunnel lining structure during and after fire scenarios[D]. Shanghai: Tongji University, 2007. (in Chinese).
    [20] 郭信君. 盾构隧道混凝土管片构件抗火性能试验及模拟分析研究[D]. 长沙: 中南大学, 2013.

    GUO Xin-jun. Experimental study and numerical simulation analysis of fire resistance performance of concrete segment component of shield tunnel[D]. Changsha: Central South University, 2013. (in Chinese).
    [21] 徐志胜, 张威振. 火灾作用后CFRP加固钢筋混凝土梁的试验研究及数值分析[J]. 铁道科学与工程学报, 2004, 1 (2): 79-83. doi: 10.3969/j.issn.1672-7029.2004.02.015

    XU Zhi-sheng, ZHANG Wei-zhen. Experimental investigation and numerical analysis for RC beams strengthened with CFRP after fire damage[J]. Journal of Railway Science and Engineering, 2004, 1 (2): 79-83. (in Chinese). doi: 10.3969/j.issn.1672-7029.2004.02.015
    [22] 刘腾, 袁大军, 张海. 火灾高温下盾构管片接头橡胶防水性能劣化规律试验研究[J]. 土木工程学报, 2015, 48 (增1): 244-249. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2015S1040.htm

    LIU Teng, YUAN Da-jun, ZHANG Hai. Experimental study on waterproof performance deterioration regulation of shield segment joint rubber in environment of high temperature fire[J]. China Civil Engineering Journal, 2015, 48 (S1): 244-249. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2015S1040.htm
    [23] 刘腾, 袁大军, 王安华, 等. 火灾对原型盾构管片接头防水性能损伤试验研究[J]. 土木工程学报, 2016, 49 (7): 116-122. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201607011.htm

    LIU Teng, YUAN Da-jun, WANG An-hua, et al. Experimental study on watertight performance of prototype shield tunnel segment joint affected by fire[J]. China Civil Engineering Journal, 2016, 49 (7): 116-122. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201607011.htm
    [24] 严佳梁. 盾构隧道管片接头形式的探讨与选择[J]. 建筑技术, 2009, 40 (3): 269-272. doi: 10.3969/j.issn.1000-4726.2009.03.022

    YAN Jia-liang. Discussion and selection of segment joint type of shield tunnel[J]. Architecture Technology, 2009, 40 (3): 269-272. (in Chinese). doi: 10.3969/j.issn.1000-4726.2009.03.022
    [25] 市原三馨, 水野敬三, 道越真太郎, 等. 耐火セグメント継手部における火災時挙動の実験的および解析的研究[J]. 大成建設技術センター報, 2008, 41: 1-6.

    ICHIHARA S, MIZUNO K, MICHIKOSHI S, et al. Experimental and analytical study of fire behavior of fireresistant segment joints[J]. Taisei Construction Technology Corporation, 2008, 41: 1-6. (in Japanese).
    [26] 郭瑞, 何川, 苏宗贤, 等. 盾构隧道管片接头抗剪力学性能研究[J]. 现代隧道技术, 2011, 48 (4): 72-77. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201104014.htm

    GUO Rui, HE Chuan, SU Zong-xian, et al. Study of shearing mechanical properties of segment joints of shield tunnels[J]. Modern Tunnelling Technology, 2011, 48 (4): 72-77. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201104014.htm
    [27] 吴兰婷. 盾构隧道管片接头力学行为的有限元分析[D]. 成都: 西南交通大学, 2005.

    WU Lan-ting. FEM analysis on mechanical behaviors of segment joints of shield tunnel[D]. Chengdu: Southwest Jiaotong University, 2005. (in Chinese).
    [28] 张稳军, 金明明, 苏忍, 等. 盾构隧道钢混复合管片的力学性能试验[J]. 中国公路学报, 2016, 29 (5): 84-94. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201605012.htm

    ZHANG Wen-jun, JIN Ming-ming, SU Ren, et al. Experiment on mechanical properties of steel and concrete composite segment for shield tunnel[J]. China Journal of Highway and Transport, 2016, 29 (5): 84-94. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201605012.htm
    [29] 中井章裕. トンネル内車両火災に対する鋼コンクリート合成構造部材の耐火実験と数値解析[D]. 东京: 早稲田大学, 2011.

    AKIHIRO N. Fire test and numerical analysis of steelconcrete composite member by vehicle fire in tunnel[D]. Tokyo: Waseda University, 2011. (in Japanese).
    [30] 郭军, 刘帅, 蒋树屏. 海底隧道管节结构防火试验与数值模拟[J]. 中国公路学报, 2016, 29 (1): 96-104, 114. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201601014.htm

    GUO Jun, LIU Shuai, JIANG Shu-ping. Fire-proof test and numerical simulation on tube structure of subsea tunnel[J]. China Journal of Highway and Transport, 2016, 29 (1): 96-104, 114. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201601014.htm
    [31] 胡辉荣, 舒中文, 程崇国. 火灾高温时隧道衬砌结构温度场的数值模拟[J]. 隧道建设, 2010, 30 (1): 15-19. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201001005.htm

    HU Hui-rong, SHU Zhong-wen, CHENG Chong-guo. Numerical simulation of temperature field of tunnel lining under high temperature in case of fire[J]. Tunnel Construction, 2010, 30 (1): 15-19. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201001005.htm
    [32] 黄叙. 高温下盾构隧道接缝结构受力特性分析及可靠度研究[D]. 长沙: 中南大学, 2014.

    HUANG Xu. Study on the stress analysis and reliability of shield tunnel joint structure under high temperature[D]. Changsha: Central South University, 2014. (in Chinese).
    [33] 段文玺. 建筑结构的火灾分析和处理[J]. 工业建筑, 1985 (8): 51-54. https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ198508009.htm

    DUAN Wen-xi. Fire analysis and treatment of building structures[J]. Industrial Construction, 1985 (8): 51-54. (in Chinese. https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ198508009.htm
  • 加载中
图(28) / 表(3)
计量
  • 文章访问数:  591
  • HTML全文浏览量:  107
  • PDF下载量:  519
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-09
  • 刊出日期:  2018-12-25

目录

    /

    返回文章
    返回