留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速列车气动性能低温风洞试验

刘凤华

刘凤华. 高速列车气动性能低温风洞试验[J]. 交通运输工程学报, 2018, 18(6): 93-100. doi: 10.19818/j.cnki.1671-1637.2018.06.010
引用本文: 刘凤华. 高速列车气动性能低温风洞试验[J]. 交通运输工程学报, 2018, 18(6): 93-100. doi: 10.19818/j.cnki.1671-1637.2018.06.010
LIU Feng-hua. Test on aerodynamic performance of high-speed train in cryogenic wind tunnel[J]. Journal of Traffic and Transportation Engineering, 2018, 18(6): 93-100. doi: 10.19818/j.cnki.1671-1637.2018.06.010
Citation: LIU Feng-hua. Test on aerodynamic performance of high-speed train in cryogenic wind tunnel[J]. Journal of Traffic and Transportation Engineering, 2018, 18(6): 93-100. doi: 10.19818/j.cnki.1671-1637.2018.06.010

高速列车气动性能低温风洞试验

doi: 10.19818/j.cnki.1671-1637.2018.06.010
基金项目: 

国家高技术研究发展计划项目 2012AA112002

国家重点研究发展计划项目 2016YFB1200500

详细信息
    作者简介:

    刘凤华(1979-), 女, 内蒙古乌兰浩特人, 中车长春轨道客车股份有限公司高级工程师, 从事列车空气动力学研究

  • 中图分类号: U270.1

Test on aerodynamic performance of high-speed train in cryogenic wind tunnel

More Information
  • 摘要: 采用低温风洞试验对比了中国高速列车HST、法国高速列车TGV和德国高速列车ICE3的气动性能; 基于EN 14067和TSI标准在铝质材料模型上测试了不同侧偏角下列车阻力、升力和倾覆力矩; 利用粒子图像测速技术测量了列车周围流场, 得到了高速列车与空气的相互作用机理和气动现象; 采用计算流体力学方法模拟了高速列车实际运行情况, 并与低温风洞试验流场测试结果进行了对比。研究结果表明: 0°~10°侧偏角下列车阻力系数绝对值从大到小依次为HST、ICE3、TGV, 侧偏角为0°时, 3种列车的阻力系数分别为0.223、0.166、0.140;0°~5°侧偏角下列车升力系数绝对值从大到小依次为TGV、ICE3、HST, 且数值均接近0, 其中ICE3、HST为正升力, 列车受压向轨面力, TGV为负升力, 列车受上浮力; 0°~5°侧偏角下列车倾覆力矩系数绝对值从大到小依次为TGV、HST、ICE3, 侧偏角为0°时, 3种列车倾覆力矩系数分别为0.021、0.019、0.011;HST高速列车由于头部双层造型设计, 在头部曲面过渡处出现流动分离, 增大了列车摩擦阻力和压差阻力, 导致列车阻力系数比TGV和ICE3偏大一些, 但阻力系数在高速列车头型设计技术要求限值0.25之内, 且升力和倾覆力矩性能较好, 列车具有良好的稳定性, 满足高速列车头型气动设计的工程需求。

     

  • 图  1  KKK低温风洞

    Figure  1.  KKK cryogenic wind tunnel

    图  2  风洞试验段

    Figure  2.  Wind tunnel test section

    图  3  HST高速列车试验模型

    Figure  3.  Test model of HST high-speed train

    图  4  TGV高速列车试验模型

    Figure  4.  Test model of TGV high-speed train

    图  5  ICE3高速列车试验模型

    Figure  5.  Test model of ICE3high-speed train

    图  6  HST高速列车试验模型轨道细节

    Figure  6.  Rail details for test model of HST high-speed train

    图  7  测力天平

    Figure  7.  Force balance

    图  8  测力天平自动校准装置

    Figure  8.  Automatic calibration device of force balance

    图  9  高速列车坐标系

    Figure  9.  Coordinate system of high-speed train

    图  10  列车阻力系数

    Figure  10.  Drag coefficients of trains

    图  11  列车升力系数

    Figure  11.  Lift coefficients of trains

    图  12  列车倾覆力矩系数

    Figure  12.  Rolling moment coefficients of trains

    图  13  HST高速列车计算网格

    Figure  13.  Computational grids of HST high-speed train

    图  14  HST高速列车速度矢量

    Figure  14.  Velocity vectors of HST high-speed train

    图  15  HST高速列车流线

    Figure  15.  Streamlines of HST high-speed train

    表  1  天平六分量参数范围

    Table  1.   Ranges of six component parameters for balance N

    下载: 导出CSV
  • [1] 张亚东, 张继业, 李田. 高速列车气动噪声贡献量分析[J]. 交通运输工程学报, 2017, 17 (4): 78-88. doi: 10.3969/j.issn.1671-1637.2017.04.008

    ZHANG Ya-dong, ZHANG Ji-ye, LI Tian. Contribution analysis of aerodynamic noise of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2017, 17 (4): 78-88. (in Chinese). doi: 10.3969/j.issn.1671-1637.2017.04.008
    [2] 肖京平, 黄志祥, 陈立. 高速列车空气动力学研究技术综述[J]. 力学与实践, 2013, 35 (2): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-LXYS201302000.htm

    XIAO Jing-ping, HUANG Zhi-xiang, CHEN Li. Review of aerodynamic investigations for high speed train[J]. Mechanics in Engineering, 2013, 35 (2): 1-12. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXYS201302000.htm
    [3] 梁习锋, 田红旗, 邹建军. 动力车纵向气动力风洞试验及数值模拟[J]. 国防科技大学学报, 2003, 25 (6): 101-105. doi: 10.3969/j.issn.1001-2486.2003.06.023

    LIANG Xi-feng, TIAN Hong-qi, ZOU Jian-jun. The wind tunnel test and numerical simulation of longitudinal aerodynamic force of the traction car[J]. Journal of National University of Defense Technology, 2003, 25 (6): 101-105. (in Chinese). doi: 10.3969/j.issn.1001-2486.2003.06.023
    [4] 黄志祥, 陈立, 蒋科林. 高速列车空气动力学特性的风洞试验研究[J]. 铁道车辆, 2011, 49 (12): 1-5. doi: 10.3969/j.issn.1002-7602.2011.12.001

    HUANG Zhi-xiang, CHEN Li, JIANG Ke-lin. Wind tunnel test on aerodynamics characteristics of high speed trains[J]. Rolling Stock, 2011, 49 (12): 1-5. (in Chinese). doi: 10.3969/j.issn.1002-7602.2011.12.001
    [5] 廖达雄, 黄知龙, 陈振华, 等. 大型低温高雷诺数风洞及其关键技术综述[J]. 实验流体力学, 2014, 28 (2): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201402001.htm

    LIAO Da-xiong, HUANG Zhi-long, CHEN Zhen-hua, et al. Review on large-scale cryogenic wind tunnel and key technologies[J]. Journal of Experiments in Fluid Mechanics, 2014, 28 (2): 1-7. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201402001.htm
    [6] 田红旗. 中国高速轨道交通空气动力学研究进展及发展思考[J]. 中国工程科学, 2015, 17 (4): 30-41. doi: 10.3969/j.issn.1009-1742.2015.04.004

    TIAN Hong-qi. Development of research on aerodynamics of high-speed rails in China[J]. Engineering Sciences, 2015, 17 (4): 30-41. (in Chinese). doi: 10.3969/j.issn.1009-1742.2015.04.004
    [7] TIAN Hong-qi, HUANG Sha, YANG Ming-zhi. Flow structure around high-speed train in open air[J]. Journal of Central South University: English Edition, 2015, 22 (2): 747-752. doi: 10.1007/s11771-015-2578-7
    [8] 赖欢, 陈振华, 高荣, 等. 大型高速低温风洞冷量回收的方法研究[J]. 西安交通大学学报, 2016, 50 (6): 136-142. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201606021.htm

    LAI Huan, CHEN Zhen-hua, GAO Rong, et al. Cold energy recycle from cryogenic wind tunnel exhaust system[J]. Journal of Xi'an Jiaotong University, 2016, 50 (6): 136-142. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201606021.htm
    [9] ZHANG Zhen, NIU Ling. Current status and key technologies of cryogenic wind tunnel[J]. Cryogenic, 2015 (2): 57-61.
    [10] 赵莉, 邹满玲, 田静琳, 等. 国外低温内式应变天平技术研究进展[J]. 实验流体力学, 2016, 30 (6): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201606001.htm

    ZHAO Li, ZOU Man-ling, TIAN Jing-lin, et al. Advances of research on internal cryogenic strain gauge balance abroad[J]. Journal of Experiments in Fluid Mechanics, 2016, 30 (6): 1-9. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201606001.htm
    [11] 黄志祥, 陈立, 蒋科林, 等. 高速列车模型风洞试验数据的影响因素分析[J]. 铁道学报, 2016, 38 (7): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201607005.htm

    HUANG Zhi-xiang, CHEN Li, JIANG Ke-lin, et al. The analysis of effect factors on wind tunnel testing data of highspeed train model[J]. Journal of Railway, 2016, 38 (7): 35-39. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201607005.htm
    [12] 黄志祥, 陈立, 蒋科林. 高速列车减小空气阻力措施的风洞试验研究[J]. 铁道学报, 2012, 34 (4): 16-21. doi: 10.3969/j.issn.1001-8360.2012.04.003

    HUANG Zhi-xiang, CHEN Li, JIANG Ke-lin. Wind tunnel test of air-drag reduction schemes of high-speed trains[J]. Journal of the China Railway Society, 2012, 34 (4): 16-21. (in Chinese). doi: 10.3969/j.issn.1001-8360.2012.04.003
    [13] 夏超, 单西壮, 杨志刚, 等. 风洞地面效应对高速列车空气动力学特性的影响[J]. 铁道学报, 2015, 37 (4): 8-16. doi: 10.3969/j.issn.1001-8360.2015.04.002

    XIA Chao, SHAN Xi-zhuang, YANG Zhi-gang, et al. Influence of ground effect in wind tunnel on aerodynamics of high speed train[J]. Journal of the China Railway Society, 2015, 37 (4): 8-16. (in Chinese). doi: 10.3969/j.issn.1001-8360.2015.04.002
    [14] ZHANG Lei, YANG Ming-zhi, LIANG Xi-feng, et al. Experimental study on the effect of wind angles on pressure distribution of train streamlined zone and train aerodynamic forces[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 174: 330-343. doi: 10.1016/j.jweia.2018.01.024
    [15] 张在中, 周丹. 不同头部外形高速列车气动性能风洞试验研究[J]. 中南大学学报: 自然科学版, 2013, 44 (6): 2603-2608. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201306058.htm

    ZHANG Zai-zhong, ZHOU Dan. Wind tunnel experiment on aerodynamic characteristic of streamline head of high speed train with different head shapes[J]. Journal of Central South University: Science and Technology, 2013, 44 (6): 2603-2608. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201306058.htm
    [16] XIANG Huo-yue, LI Yong-le, CHEN Su-ren, et al. A wind tunnel test method on aerodynamic characteristics of moving vehicles under crosswinds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 163: 15-23. doi: 10.1016/j.jweia.2017.01.013
    [17] 李鲲, 梁习锋, 杨明智. 高速铁路挡风墙防风特性风洞试验及优化比选[J]. 中南大学学报: 自然科学版, 2018, 49 (5): 1297-1305. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201805034.htm

    LI Kun, LIANG Xi-feng, YANG Ming-zhi. Anti-wind aerodynamic performance of high-speed train and wind-break wall optimization[J]. Journal of Central South University: Science and Technology, 2018, 49 (5): 1297-1305. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201805034.htm
    [18] WANG Ming, LI Xiao-zhen, XIAO Jun, et al. An experimental analysis of the aerodynamic characteristics of a high-speed train on a bridge under crosswinds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 177: 92-100. doi: 10.1016/j.jweia.2018.03.021
    [19] WANG S B, BELL J R, BURTON D, et al. The performance of different turbulence models (URANS, SAS and DES) for predicting high-speed train slipstream[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 165: 46-57. doi: 10.1016/j.jweia.2017.03.001
    [20] 郭文华, 张佳文, 项超群. 桥梁对高速列车气动特性影响的风洞试验研究[J]. 中南大学学报: 自然科学版, 2015, 46 (8): 3151-3159. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201508052.htm

    GUO Wen-hua, ZHANG Jia-wen, XIANG Chao-qun. Wind tunnel test of aerodynamic characteristics of high-speed train on bridge[J]. Journal of Central South University: Science and Technology, 2015, 46 (8): 3151-3159. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201508052.htm
    [21] MEYER O, NITSCHE W. Update on progress in adaptive wind tunnel wall technology[J]. Progress in Aerospace Sciences, 2004, 40 (3): 119-141. doi: 10.1016/j.paerosci.2004.02.001
    [22] OWEN F K, OWEN A K. Measurement and assessment of wind tunnel flow quality[J]. Progress in Aerospace Sciences, 2008, 44 (5): 315-348. doi: 10.1016/j.paerosci.2008.04.002
    [23] BAKER C J, JONES J, LOPEZ-CALLEJA F, et al. Measurement of the cross wind forces on trains[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2004, 92 (7/8): 547-563.
    [24] GIAPPINO S, MELZI S, TOMASINI G, et al. High-speed freight trains for intermodal transportation: wind tunnel study on the aerodynamic coefficients of container wagons[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 175: 111-119. doi: 10.1016/j.jweia.2018.01.047
    [25] BAKER C. The flow around high speed trains[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98 (6/7): 277-298.
    [26] 战培国. 国外大型风洞中的粒子图像测速技术发展[J]. 飞航导弹, 2017 (3): 62-67. https://www.cnki.com.cn/Article/CJFDTOTAL-FHDD201703016.htm

    ZHAN Pei-guo. Development on particle image velocimetry in large foreign wind tunnels[J]. Aerodynamic Missile Journal, 2017 (3): 62-67. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FHDD201703016.htm
    [27] SICOT C, DELIANCOURT F, BOREE J, et al. Representativeness of geometrical details during wind tunnel tests. Application to train aerodynamics in crosswind conditions[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 177: 186-196. doi: 10.1016/j.jweia.2018.01.040
    [28] BELL J R, BURTON D, THOMPSON M C, et al. A windtunnel methodology for assessing the slipstream of high-speed trains[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 166: 1-19. doi: 10.1016/j.jweia.2017.03.012
    [29] GALLAGHER M, MORDEN J, BAKER C, et al. Trains in crosswinds—comparison of full-scale on-train measurements, physical model tests and CFD calculations[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 175: 428-444. doi: 10.1016/j.jweia.2018.03.002
    [30] WEINMAN K A, FRAGNER M, DEITERDING R, et al. Assessment of the mesh refinement influence on the computed flow-fields about a model train in comparison with wind tunnel measurements[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 179: 102-117. doi: 10.1016/j.jweia.2018.05.005
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  878
  • HTML全文浏览量:  239
  • PDF下载量:  358
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-21
  • 刊出日期:  2018-12-25

目录

    /

    返回文章
    返回