留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双线性黏聚区模型在混凝土路面损伤开裂分析中的应用

周正峰 蒲卓桁 唐基华

周正峰, 蒲卓桁, 唐基华. 双线性黏聚区模型在混凝土路面损伤开裂分析中的应用[J]. 交通运输工程学报, 2019, 19(1): 17-23. doi: 10.19818/j.cnki.1671-1637.2019.01.003
引用本文: 周正峰, 蒲卓桁, 唐基华. 双线性黏聚区模型在混凝土路面损伤开裂分析中的应用[J]. 交通运输工程学报, 2019, 19(1): 17-23. doi: 10.19818/j.cnki.1671-1637.2019.01.003
ZHOU Zheng-feng, PU Zhuo-heng, TANG Ji-hua. Application of bilinear cohesive zone model in damage and cracking analysis of concrete pavement[J]. Journal of Traffic and Transportation Engineering, 2019, 19(1): 17-23. doi: 10.19818/j.cnki.1671-1637.2019.01.003
Citation: ZHOU Zheng-feng, PU Zhuo-heng, TANG Ji-hua. Application of bilinear cohesive zone model in damage and cracking analysis of concrete pavement[J]. Journal of Traffic and Transportation Engineering, 2019, 19(1): 17-23. doi: 10.19818/j.cnki.1671-1637.2019.01.003

双线性黏聚区模型在混凝土路面损伤开裂分析中的应用

doi: 10.19818/j.cnki.1671-1637.2019.01.003
基金项目: 

国家自然科学基金项目 51878575

详细信息
    作者简介:

    周正峰(1981-), 男, 湖北荆州人, 西南交通大学副教授, 工学博士, 从事道路与机场工程研究

  • 中图分类号: U416.217

Application of bilinear cohesive zone model in damage and cracking analysis of concrete pavement

More Information
    Author Bio:

    ZHOU Zheng-feng(1981-), male, associateprofessor, PhD, zhouzf126@126.com

  • 摘要: 为了揭示混凝土路面的损伤开裂机理及其对承载力的影响, 考虑混凝土材料的弹塑性, 应用非线性断裂力学中的双线性黏聚区模型, 结合ABAQUS有限元软件, 在预计开裂部位布设黏结单元, 模拟了四点加载小梁试件从弹性响应到断裂失效的全过程, 以验证双线性黏聚区模型在混凝土损伤开裂分析中的适用性; 应用双线性黏聚区模型分析了Winkler地基上混凝土板的断裂特性和损伤后的承载力衰减。分析结果表明: 在加载小梁受荷全过程中, 梁底应力经历了线性增大、达到混凝土极限强度后减小、最大点上移与变为0等阶段, 作用力-加载位移变化与已有研究一致; 在加载全过程中, 混凝土板的截面应力分布变化与小梁类似; 混凝土板在损伤阶段承载力会持续增大, 但由于板的支承条件与四点加载小梁不同, 板的断裂近似于脆性断裂, 无明显承载力衰减过程, 板断裂时的极限承载力与弹性阶段临界状态承载力之比为1.32;混凝土板发生初始损伤后, 极限承载力最大会衰减至未损伤板的87%, 且随着初始损伤程度的增加, 极限承载力衰减速率变大。

     

  • 图  1  黏聚区模型

    Figure  1.  Cohesive zone model

    图  2  双线性黏结单元

    Figure  2.  Bilinear cohesive element

    图  3  梁四点加载模型

    Figure  3.  Model of beam subjected to four-point loading

    图  4  弹性阶段梁截面正应力分布

    Figure  4.  Normal stress distributions along beam section at elasticity stage

    图  5  损伤阶段梁截面正应力分布

    Figure  5.  Normal stress distributions along beam section at damage stage

    图  6  开裂阶段梁截面正应力分布

    Figure  6.  Normal stress distributions along beam section at cracking stage

    图  7  梁上荷载-位移曲线

    Figure  7.  Load-displacement curve for beam

    图  8  混凝土板荷载-位移曲线

    Figure  8.  Load-displacement curve for concrete slab

    图  9  板截面正应力分布

    Figure  9.  Normal stress distributions along slab section

    图  10  初始损伤板与未损伤板的极限应力之比

    Figure  10.  Ratioes of ultimate stress of slab with initial damage to that of undamaged slab

    表  1  混凝土材料参数

    Table  1.   Concrete material parameters

    参数 数值
    弹性模量/GPa 32.04
    泊松比 0.15
    抗拉强度/MPa 4.15
    断裂能/ (N·m-1) 167
    开裂位移/mm 0.076 2
    下载: 导出CSV
  • [1] XIAO Yang-jian, CHEN Zeng-shun, ZHOU Jian-ting, et al. Concrete plastic-damage factor for finite element analysis: concept, simulation, and experiment[J]. Advances in Mechanical Engineering, 2017, 9 (9): 1-10.
    [2] IOANNIDES A M. Fracture mechanics in pavement engineering: the specimen-size effect[J]. Transportation Research Record, 1997 (1568): 10-16.
    [3] RAMSAMOOJ D V, LIN G S, RAMADAN J. Stresses at joints and cracks in highway and airport pavements[J]. Engineering Fracture Mechanics, 1998, 60: 507-518. doi: 10.1016/S0013-7944(98)00059-9
    [4] CASTELL M A, INGRAFFEA A R, IRWIN L H. Fatigue crack growth in pavements[J]. Journal of Transportation Engineering, 2000, 126 (4): 283-290. doi: 10.1061/(ASCE)0733-947X(2000)126:4(283)
    [5] JENSEN E A, HANSEN W. Crack resistance of jointed plain concrete pavements[J]. Transportation Research Record, 2002 (1809): 60-65.
    [6] IOANNIDES A M, PENG Jun, SWINDLER JR J R. ABAQUS model for PCC slab cracking[J]. International Journal of Pavement Engineering, 2006, 7 (4): 311-321. doi: 10.1080/10298430600798994
    [7] GAEDICKE C, ROESLER J, SHAH S. Fatigue crack growth prediction in concrete slabs[J]. International Journal of Fatigue, 2009, 31: 1309-1317. doi: 10.1016/j.ijfatigue.2009.02.040
    [8] AMERI M, MANSOURIAN A, KHAVAS M H, et al. Cracked asphalt pavement under traffic loading—a 3D finite element analysis[J]. Engineering Fracture Mechanics, 2011, 78 (8): 1817-1826. doi: 10.1016/j.engfracmech.2010.12.013
    [9] LING Jian-ming, TAO Ze-feng, QIAN Jin-song, et al. Investigation the influences of geotextile on reducing the thermal reflective cracking using XFEM[J]. International Journal of Pavement Engineering, 2018, 19 (5): 391-398. doi: 10.1080/10298436.2017.1402598
    [10] JENQ Y, SHAH S P. Two parameter fracture model for concrete[J]. Journal of Engineering Mechanics, 1985, 111 (10): 1227-1241. doi: 10.1061/(ASCE)0733-9399(1985)111:10(1227)
    [11] BARENBLATT G I. The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks[J]. Journal of Applied Mathematics and Mechanics, 1959, 23 (3): 622-636. doi: 10.1016/0021-8928(59)90157-1
    [12] BARENBLATT G I. The mathematical theory of equilibrium cracks in brittle fracture[J]. Advances in Applied Mechanics, 1962, 7: 55-129.
    [13] HILLERBORG A, MODEER M, PETERSSON P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement and Concrete Research, 1976, 6 (6): 773-781. doi: 10.1016/0008-8846(76)90007-7
    [14] BRINCKER R, DAHL H. Fictitious crack model of concrete fracture[J]. Magazine of Concrete Research, 1989, 41 (147): 79-86. doi: 10.1680/macr.1989.41.147.79
    [15] ULFKJæR J P, KRENK S, BRINCKER R. Analytical model for fictitious crack propagation in concrete beams[J]. Journal of Engineering Mechanics, 1995, 121 (1): 7-15. doi: 10.1061/(ASCE)0733-9399(1995)121:1(7)
    [16] ELICES M, GUINEA G V, GOMEZ J, et al. The cohesive zone model: advantages, limitations and challenges[J]. Engineering Fracture Mechanics, 2002, 69 (2): 137-163. doi: 10.1016/S0013-7944(01)00083-2
    [17] SONG S H, PAULINO G H, BUTTLAR W G. Simulation of crack propagation in asphalt concrete using an intrinsic cohesive zone model[J]. Journal of Engineering Mechanics, 2006, 132 (11): 1215-1223. doi: 10.1061/(ASCE)0733-9399(2006)132:11(1215)
    [18] SONG S H, PAULINO G H, BUTTLAR W G. A bilinear cohesive zone model tailored for fracture of asphalt concrete considering viscoelastic bulk material[J]. Engineering Fracture Mechanics, 2006, 73 (18): 2829-2848. doi: 10.1016/j.engfracmech.2006.04.030
    [19] ROESLER J, PAULINO G H, PARK K, et al. Concrete fracture prediction using bilinear softening[J]. Cement and Concrete Composites, 2007, 29 (4): 300-312. doi: 10.1016/j.cemconcomp.2006.12.002
    [20] FERREIRA M D C, VENTURINI W S, HILD F. On the analysis of notched concrete beams: from measurement with digital image correlation to identification with boundary element method of a cohesive model[J]. Engineering Fracture Mechanics, 2011, 78 (1): 71-84. doi: 10.1016/j.engfracmech.2010.10.008
    [21] KIM Y R. Cohesive zone model to predict fracture in bituminous materials and asphaltic pavements: state-of-the-art review[J]. International Journal of Pavement Engineering, 2011, 12 (4): 343-356. doi: 10.1080/10298436.2011.575138
    [22] 周正峰, 蒲卓桁, 刘超. 黏聚区模型在沥青路面反射裂缝模拟中的应用[J]. 交通运输工程学报, 2018, 18 (3): 1-10. doi: 10.3969/j.issn.1671-1637.2018.03.002

    ZHOU Zheng-feng, PU Zhuo-heng, LIU Chao. Application of cohesive zone model to simulate reflective crack of asphalt pavement[J]. Journal of Traffic and Transportation Engineering, 2018, 18 (3): 1-10. (in Chinese). doi: 10.3969/j.issn.1671-1637.2018.03.002
    [23] ROESLERJ, PAULINO G, GAEDICKE C, et al. Fracture behavior of functionally graded concrete materials for rigid pavements[J]. Transportation Research Record, 2007 (2037): 40-50.
    [24] PARK K, PAULINO G H, ROESLER J R. Determination of the kink point in the bilinear softening model for concrete[J]. Engineering Fracture Mechanics, 2008, 75 (13): 3806-3818. doi: 10.1016/j.engfracmech.2008.02.002
    [25] PARK K, PAULINO G H, ROESLER JR. Cohesive fracture model for functionally graded fiber reinforced concrete[J]. Cement and Concrete Reseach, 2010, 40: 956-965. doi: 10.1016/j.cemconres.2010.02.004
    [26] GAEDICKE C, ROESLER J. Fracture-based method to determine flexural capacity of concrete beams on soil[J]. Road Materials and Pavement Design, 2010, 11 (2): 361-385. doi: 10.1080/14680629.2010.9690280
    [27] GAEDICKE C, ROESLER J, EVANGELISTA JR F. Three-dimensional cohesive crack model prediction of the flexural capacity of concrete slabs on soil[J]. Engineering Fracture Mechanics, 2012, 94: 1-12. doi: 10.1016/j.engfracmech.2012.04.029
    [28] 管俊峰, 卿龙邦, 赵顺波. 混凝土三点弯曲梁裂缝断裂全过程数值模拟研究[J]. 计算力学学报, 2013, 30 (1): 143-148, 155. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201301023.htm

    GUAN Jun-feng, QING Long-bang, ZHAO Shun-bo. Research on numerical simulation on the whole cracking processes of three-point bending notch concrete beams[J]. Chinese Journal of Computational Mechanics, 2013, 30 (1): 143-148, 155. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201301023.htm
    [29] LU W Y, HU S W. Effect of large crack-depth ratio on three-point bending concrete beam with single edge notch[J]. Materials Research Innovations, 2015, 19 (S8): 312-317.
    [30] CAMANHO P P, DAVILA C G. Mix-mode decohesion finite elements for the simulation of delamination in composite materials[R]. Washington DC: NASA, 2002.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  1514
  • HTML全文浏览量:  271
  • PDF下载量:  1025
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-07
  • 刊出日期:  2019-02-25

目录

    /

    返回文章
    返回