留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

酸性环境对百色膨胀土胀缩性能的影响及其微观解释

常锦 杨和平 肖杰 刘雄 陈冠一 毛瑞

常锦, 杨和平, 肖杰, 刘雄, 陈冠一, 毛瑞. 酸性环境对百色膨胀土胀缩性能的影响及其微观解释[J]. 交通运输工程学报, 2019, 19(1): 24-32. doi: 10.19818/j.cnki.1671-1637.2019.01.004
引用本文: 常锦, 杨和平, 肖杰, 刘雄, 陈冠一, 毛瑞. 酸性环境对百色膨胀土胀缩性能的影响及其微观解释[J]. 交通运输工程学报, 2019, 19(1): 24-32. doi: 10.19818/j.cnki.1671-1637.2019.01.004
CHANG Jin, YANG He-ping, XIAO Jie, LIU Xiong, CHEN Guan-yi, MAO Rui. Effect of acid environment on swelling-shrinkage properties of Baise expansive soil and its microscopic interpretation[J]. Journal of Traffic and Transportation Engineering, 2019, 19(1): 24-32. doi: 10.19818/j.cnki.1671-1637.2019.01.004
Citation: CHANG Jin, YANG He-ping, XIAO Jie, LIU Xiong, CHEN Guan-yi, MAO Rui. Effect of acid environment on swelling-shrinkage properties of Baise expansive soil and its microscopic interpretation[J]. Journal of Traffic and Transportation Engineering, 2019, 19(1): 24-32. doi: 10.19818/j.cnki.1671-1637.2019.01.004

酸性环境对百色膨胀土胀缩性能的影响及其微观解释

doi: 10.19818/j.cnki.1671-1637.2019.01.004
基金项目: 

国家自然科学基金项目 51608053

湖南省自然科学基金项目 2017JJ3335

湖南省研究生科研创新项目 CX2017B458

详细信息
    作者简介:

    常锦(1990-), 男, 湖南长沙人, 长沙理工大学工学博士研究生, 从事道路工程研究

    杨和平(1954-), 男, 湖南长沙人, 长沙理工大学教授

  • 中图分类号: U416.14

Effect of acid environment on swelling-shrinkage properties of Baise expansive soil and its microscopic interpretation

More Information
  • 摘要: 以广西酸雨重灾区百色膨胀土为研究对象, 模拟不同酸性条件(pH值分别为3、5、7) 开展无荷膨胀率、膨胀力与线缩率试验, 研究酸雨对其胀缩性能的影响, 并采用扫描电镜(SEM) 图像和X射线衍射(XRD) 图谱分析了其微观结构与矿物成分, 运用IPP图像处理软件定量分析了SEM图像中试样的微结构。研究结果表明: 试样起始含水率降低时, 酸性环境对其膨胀变形的促进作用加大; 起始含水率由17%降至9%时, 不同酸性环境下试样的无荷膨胀率之差变大, 相比中性溶液, pH值为3和5的酸性溶液浸泡试样的无荷膨胀率增幅分别由20.6%和5.6%增至26.9%和7.0%;随着溶液pH值的减小, 试样无荷膨胀率、膨胀力与线缩率均呈阶段性增长; 相比中性溶液, pH值为3的酸性溶液浸泡试样的实测无荷膨胀率、膨胀力与线缩率分别增加了24.3%、37.5%和16.9%;环境酸性越强, 试样水分蒸发的速度越快, 脱湿至稳定时的含水率越低, 受酸侵蚀土的孔隙数和尺寸随之增加; 当溶液pH值从7分别降至5和3时, 土体孔隙率由8.7%分别增至11.9%和19.4%, 直径为3~5 μm的孔隙数急剧增多; 酸性环境使矿物结晶的程度变差, 其中游离的SiO2、Al2O3、K2O、MgO和CaO等胶结物出现不同程度的溶蚀和淋滤, 使原叠聚体间的结构联结强度减弱, 由面面叠聚结构逐渐向边边结构演化, 环境酸性愈强, 这种演化趋势愈剧烈, 直接导致膨胀土的胀缩变形增大。

     

  • 图  1  无荷膨胀率试验

    Figure  1.  Load-free swelling rate test

    图  2  膨胀力试验

    Figure  2.  Swelling force test

    图  3  不同酸性环境下试样无荷膨胀率时程曲线

    Figure  3.  Time history curves of load-free swelling rates of specimens under different acid environments

    图  4  不同起始含水率下试样的无荷膨胀率

    Figure  4.  Load-free swelling rates of specimens under different initial water contents

    图  5  不同酸性环境下试样膨胀力时程曲线

    Figure  5.  Time history curves of swelling forces of specimens under different acid environments

    图  6  不同起始含水率下试样的膨胀力

    Figure  6.  Swelling forces of specimens under different initial water contents

    图  7  不同酸性环境下试样含水率与线缩率时程

    Figure  7.  Time histories of water contents and linear shrinkage rates of specimens under different acid environments

    图  8  不同pH值溶液侵蚀后土样微观结构

    Figure  8.  Microstructures of soil specimens eroded by solutions with different pH values

    图  9  不同酸性环境下土体孔径分布

    Figure  9.  Pore size distributions of soil under different acid environments

    图  10  中性溶液与pH值为5的酸性溶液侵蚀后试样XRD试验结果对比

    Figure  10.  Comparison of XRD test results between specimens eroded by neutral solution and acid solution with pH value of 5

    图  11  中性溶液与pH值为3的酸性溶液侵蚀后试样XRD试验结果对比

    Figure  11.  Comparison of XRD test results between specimens eroded by neutral solution and acid solution with pH value of 3

    图  12  酸性环境侵蚀后百色膨胀土结构演化示意

    Figure  12.  Schematic of structural evolution of Baise expansive soil eroded by acid environment

    表  1  膨胀土基本性质指标

    Table  1.   Basic characteristic indices of expansive soil

    土样名称 相对密度 天然含水率/% 天然密度/ (g·cm-3) 液限/% 孔隙比/% 塑限/% 塑性指数 不同粒径(mm) 下的颗粒质量分数/% 蒙脱石质量分数/% 比表面积/ (m2·g-1) 自由膨胀率/% 伊/蒙混层比/%
    > 0.075 [0.005, 0.075] < 0.005 < 0.002
    百色样 2.70 20.60 2.09 56.26 0.59 21.37 34.89 0.10 52.02 47.88 45.20 16.58 130.77 82.00 45.00
    下载: 导出CSV

    表  2  试验方案

    Table  2.   Test programs

    试验项目 pH值 起始含水率/%
    无荷膨胀率 3、5、7 9、13、17
    膨胀力 3、5、7 9、13、17
    线缩率 3、5、7 浸泡7 d后试样的测试值
    下载: 导出CSV

    表  3  试样无荷膨胀率拟合方程

    Table  3.   Fitting equations of load-free swelling rates of specimens

    pH值 拟合函数式 判定系数R2
    3 δt=20.46-20.461+(t/3.621)0.815 0.978
    5 δt=17.53-17.531+(t/3.394)0.912 0.982
    7 δt=16.55-16.551+(t/3.507)0.876 0.971
    下载: 导出CSV

    表  4  试样膨胀力的拟合方程

    Table  4.   Fitting equations of swelling forces of specimens

    pH值 拟合函数式 判定系数R2
    3 pt=189.1-189.11+(t/1.262)0.947 0.952
    5 pt=151.3-151.31+(t/0.936)0.983 0.959
    7 pt=131.4-131.41+(t/1.124)1.106 0.946
    下载: 导出CSV

    表  5  不同pH值溶液侵蚀后土体孔隙微结构特征

    Table  5.   Pore microstructure characteristics of soil eroded by solutions with different pH values

    pH值 面积大于10 μm2的孔隙数 孔隙率/% 3~5 μm直径占比/% 形态分形维数
    3 72 19.4 25.7 1.320 1
    5 45 11.9 14.8 1.281 4
    7 38 8.7 9.2 1.265 8
    下载: 导出CSV
  • [1] 王继华, 彭振斌, 杜长学. 边坡中水土化学作用浅析[J]. 中国地质灾害与防治学报, 2006, 17 (2): 69-73. doi: 10.3969/j.issn.1003-8035.2006.02.016

    WANG Ji-hua, PENG Zhen-bin, DU Chang-xue. Chemical interaction of water-soil within slope[J]. The Chinese Journal of Geological Hazard and Control, 2006, 17 (2): 69-73. (in Chinese). doi: 10.3969/j.issn.1003-8035.2006.02.016
    [2] CHENG Ai-zhen, WEI Hua-hong, TAN Fei. Analysis of the temporal-spatial distribution and seasonal variation of the acid rain in Guangxi[J]. Meteorological and Environmental Research, 2010, 1 (1): 62-65.
    [3] 黄淑娟, 唐毓勇. 百色酸雨状况及成因分析[J]. 云南地理环境研究, 2008, 20 (增1): 20-23. https://www.cnki.com.cn/Article/CJFDTOTAL-YNDL2008S1004.htm

    HUANG Shu-juan, TANG Yu-yong. Analysis on status and cause of Baise acid rain[J]. Yunnan Geographical Environment Research, 2008, 20 (S1): 20-23. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YNDL2008S1004.htm
    [4] 李光雷, 蔚立元, 靖洪文, 等. 酸腐蚀后灰岩动态压缩力学性质的试验研究[J]. 岩土力学, 2017, 38 (11): 3247-3254. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201711022.htm

    LI Guang-lei, YU Li-yuan, JING Hong-wen, et al. Experimental study of dynamic compressive mechanical properties of limestone after acid corrosion[J]. Rock and Soil Mechanics, 2017, 38 (11): 3247-3254. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201711022.htm
    [5] 杨德欢, 颜荣涛, 韦昌富, 等. 粉质黏土强度指标的水化学敏感性研究[J]. 岩土力学, 2016, 37 (12): 3529-3536. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201612023.htm

    YANG De-huan, YAN Rong-tao, WEI Chang-fu, et al. A study of water chemical sensitivity of strength indices of silty clay[J]. Rock and Soil Mechanics, 2016, 37 (12): 3529-3536. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201612023.htm
    [6] 张先伟, 孔令伟, 陈成, 等. 水化学环境对湛江组黏土结构强度的影响研究[J]. 岩土工程学报, 2017, 39 (11): 1967-1975. doi: 10.11779/CJGE201711003

    ZHANG Xian-wei, KONG Ling-wei, CHEN Cheng, et al. Effects of hydrochemistry on structural strength of Zhanjiang formation clay[J]. Journal of Geotechnical Engineering, 2017, 39 (11): 1967-1975. (in Chinese). doi: 10.11779/CJGE201711003
    [7] GRATCHEV I, TOWHATA I. Stress-strain characteristics of two natural soils subjected to long-term acidic contamination[J]. Soils and Foundations, 2013, 53 (3): 469-476. doi: 10.1016/j.sandf.2013.04.008
    [8] WAHIDA S, GAJO A, DI MAGGIO R. Chemo-mechanical effects in kaolinite. Part 2: exposed samples and chemical and phase analyses[J]. Géotechnique, 2011, 61 (6): 449-457. doi: 10.1680/geot.8.P.068
    [9] KORICHI S, ELIAS A, MEFTI A. Characterization of smectite after acid activation with microwave irradiation[J]. Applied Clay Science, 2009, 42 (3/4): 432-438.
    [10] 汤连生. 水-土化学作用的力学效应及机理分析[J]. 中山大学学报(自然科学版), 2000, 39 (4): 104-109. doi: 10.3321/j.issn:0529-6579.2000.04.024

    TANG Lian-sheng. Mechanical effect of chemical action of water on soil and analysis on its mechanism[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni (Natural Science), 2000, 39 (4): 104-109. (in Chinese). doi: 10.3321/j.issn:0529-6579.2000.04.024
    [11] 周修萍, 江静蓉, 梁伟, 等. 模拟酸雨对南方五种土壤理化性质的影响[J]. 环境科学, 1988, 9 (3): 6-12. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ198803001.htm

    ZHOU Xiu-ping, JIANG Jing-rong, LIANG Wei, et al. Effect of acid rain on physical and chemical properties of five southern soils[J]. Environmental Science, 1988, 9 (3): 6-12. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ198803001.htm
    [12] 李志清, 李涛, 胡瑞林, 等. 蒙自重塑膨胀土膨胀变形特性与施工控制研究[J]. 岩土工程学报, 2008, 30 (12): 1855-1860. doi: 10.3321/j.issn:1000-4548.2008.12.014

    LI Zhi-qing, LI Tao, HU Rui-lin, et al. Expansion characteristics and construction control of remolded Mengzi expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2008, 30 (12): 1855-1860. (in Chinese). doi: 10.3321/j.issn:1000-4548.2008.12.014
    [13] CHAVALI R V P, PONNAPUREDDY H P R. Swelling and compressibility characteristics of bentonite and kaolin clay subjected to inorganic acid contamination[J]. International Journal of Geotechnical Engineering, 2018, 12 (5): 1-7.
    [14] BENDOU S, AMRANI M. Effect of hydrochloric acid on the structural of sodic-bentonite clay[J]. Journal of Minerals and Materials Characterization and Engineering, 2014, 2 (5): 404-413. doi: 10.4236/jmmce.2014.25045
    [15] PANDA A K, MISHRA B G, MISHRA D K, et al. Effect of sulphuric acid treatment on the physico-chemical characteristics of kaolin clay[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 363 (1-3): 98-104.
    [16] WANG Y H, SIU W K. Structure characteristics and mechanical properties of kaolinite soils. II. Effects of structure on mechanical properties[J]. Canadian Geotechnical Journal, 2006, 43 (6): 601-617. doi: 10.1139/t06-027
    [17] BAKHSHIPOUR Z, ASADI A, HUAT B B K, et al. Effect of acid rain on geotechnical properties of residual soils[J]. Soils and Foundations, 2016, 56 (6): 1008-1020.
    [18] 李相然, 姚志祥, 曹振斌. 济南典型地区地基土污染腐蚀性质变异研究[J]. 岩土力学, 2004, 25 (8): 1229-1233. doi: 10.3969/j.issn.1000-7598.2004.08.011

    LI Xiang-ran, YAO Zhi-xiang, CAO Zhen-bin. Study on physical and mechanical property variation of polluted erosive foundation soils in typical district of Jinan[J]. Rock and Soil Mechanics, 2004, 25 (8): 1229-1233. (in Chinese). doi: 10.3969/j.issn.1000-7598.2004.08.011
    [19] SIVAPULLAIAH P V, PRASAD B G, ALLAM M M. Effect of sulfuric acid on swelling behavior of an expansive soil[J]. Soil and Sediment Contamination: An International Journal, 2009, 18 (2): 121-135.
    [20] 杨和平, 曲永新, 郑健龙. 宁明膨胀土研究的新进展[J]. 岩土工程学报, 2005, 27 (9): 981-987. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200509001.htm

    YANG He-ping, QU Yong-xin, ZHENG Jian-long. New development in studies on Ningming expansive soils[J]. Journal of Geotechnical Engineering, 2005, 27 (9): 981-987. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200509001.htm
    [21] 张扬, 王婷. 我国酸雨综述[J]. 中国科技博览, 2009 (32): 212. https://www.cnki.com.cn/Article/CJFDTOTAL-ANHU802.024.htm

    ZHANG Yang, WANG Ting. Overview of acid rain in China[J]. China Science and Technology Review, 2009 (32): 212. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ANHU802.024.htm
    [22] 李献民, 王永和, 杨果林, 等. 击实膨胀土工程变形特征的试验研究[J]. 岩土力学, 2003, 24 (5): 826-830. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200305035.htm

    LI Xian-min, WANG Yong-he, YANG Guo-lin, et al. Test study on engineering deformation characteristics of compacted expansive soil[J]. Rock and Soil Mechanics, 2003, 24 (5): 826-830. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200305035.htm
    [23] STRZALKA D, GRABOWSKI F. Towards possible q-generalizations of the Malthus and Verhulst growth models[J]. Physica A: Statistical Mechanics and Its Applications, 2008, 387 (11): 2511-2518.
    [24] 欧孝夺, 唐迎春, 钟子文, 等. 重塑膨胀岩土微变形条件下膨胀力试验研究[J]. 岩石力学与工程学报, 2013, 32 (5): 1067-1072. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201305026.htm

    OU Xiao-duo, TANG Ying-chun, ZHONG Zi-wen, et al. Test research on expansive force under small deformation of remolded expansive rock and soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32 (5): 1067-1072. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201305026.htm
    [25] 汪贤恩, 谭晓慧, 辛志宇, 等. 膨胀土收缩性质的试验研究[J]. 岩土工程学报, 2015, 37 (增2): 107-114. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2015S2023.htm

    WANG Xian-en, TAN Xiao-hui, XIN Zhi-yu, et al. Experimental study on shrinkage properties of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2015, 37 (S2): 107-114. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2015S2023.htm
    [26] 徐世民, 吴志坚, 赵文琛, 等. 基于Matlab和IPP的黄土孔隙微观结构研究[J]. 地震工程学报, 2017, 39 (1): 80-87. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201701012.htm

    XU Shi-min, WU Zhi-jian, ZHAO Wen-chen, et al. Study of the microscopic pores of structured loess based on Matlab and IPP[J]. China Earthquake Engineering Journal, 2017, 39 (1): 80-87. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201701012.htm
    [27] 戴张俊, 陈善雄, 罗红明, 等. 南水北调中线膨胀土/岩微观特征及其性质研究[J]. 岩土工程学报, 2013, 35 (5): 948-954. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201305024.htm

    DAI Zhang-jun, CHEN Shan-xiong, LUO Hong-ming, et al. Microstructure and characteristics of expansive soil and rock of middle route of South-to-North Water Diversion Project[J]. Chinese Journal of Geotechnical Engineering, 2013, 35 (5): 948-954. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201305024.htm
    [28] MOORE C A, DONALDSON C F. Quantifying soil microstructure using fractals[J]. Geotechnique, 1995, 45 (1): 105-116.
    [29] WANG Y H, SIU W K. Structure characteristics and mechanical properties of kaolinite soils. I. Surface charges and structural characterizations[J]. Canadian Geotechnical Journal, 2006, 43 (6): 587-600.
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  1307
  • HTML全文浏览量:  200
  • PDF下载量:  1198
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-11
  • 刊出日期:  2019-02-25

目录

    /

    返回文章
    返回