留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

青藏高原机场跑道多年冻土地基温度场特征

戚春香 李瑶 杨简 张献民 程国勇

戚春香, 李瑶, 杨简, 张献民, 程国勇. 青藏高原机场跑道多年冻土地基温度场特征[J]. 交通运输工程学报, 2019, 19(1): 33-47. doi: 10.19818/j.cnki.1671-1637.2019.01.005
引用本文: 戚春香, 李瑶, 杨简, 张献民, 程国勇. 青藏高原机场跑道多年冻土地基温度场特征[J]. 交通运输工程学报, 2019, 19(1): 33-47. doi: 10.19818/j.cnki.1671-1637.2019.01.005
QI Chun-xiang, LI Yao, YANG Jian, ZHANG Xian-min, CHENG Guo-yong. Characteristics of temperature field of airfield runway permafrost subgrade in Qinghai-Tibetan Plateau[J]. Journal of Traffic and Transportation Engineering, 2019, 19(1): 33-47. doi: 10.19818/j.cnki.1671-1637.2019.01.005
Citation: QI Chun-xiang, LI Yao, YANG Jian, ZHANG Xian-min, CHENG Guo-yong. Characteristics of temperature field of airfield runway permafrost subgrade in Qinghai-Tibetan Plateau[J]. Journal of Traffic and Transportation Engineering, 2019, 19(1): 33-47. doi: 10.19818/j.cnki.1671-1637.2019.01.005

青藏高原机场跑道多年冻土地基温度场特征

doi: 10.19818/j.cnki.1671-1637.2019.01.005
基金项目: 

中央高校基本科研业务费专项资金项目 3122017037

中央高校基本科研业务费专项资金项目 3122016C007

中央高校基本科研业务费专项资金项目 3122016A005

国家自然科学基金项目 51178456

详细信息
    作者简介:

    戚春香(1980-), 女, 河北武强人, 中国民航大学副教授, 工学博士, 从事机场跑道安全研究

  • 中图分类号: U416.168

Characteristics of temperature field of airfield runway permafrost subgrade in Qinghai-Tibetan Plateau

More Information
    Author Bio:

    QI Chun-xiang(1980-), female, associate professor, PhD, 156349158@qq.com

  • 摘要: 对比了青藏高原多年冻土地区机场跑道地基温度场与公路路基温度场, 分析了其地基温度分布、温度沿深度的变化以及地基最大融化深度, 研究了宽幅沥青混凝土道面机场跑道地基温度场特征, 对比了不同道面宽度条件下其地基温度分布、不同时间地基温度沿深度的变化以及跑道中部及道肩的最大融化深度, 并基于道面宽度、时间建立了沥青混凝土道面机场跑道道中地基融化深度的表达式。研究结果表明: 多年冻土地区机场跑道地基温度场与公路路基温度场存在明显差异, 机场跑道地基融土核位置更低, 且全部位于天然地面以下, 而公路路基融土核位置相对较高, 可以通过抬高路堤使融土核全部位于路堤内, 便于通风管等温控措施的施工, 可见由于机场跑道无路堤、道面幅度宽等特点, 使得多年冻土地区公路与铁路建设的现有研究成果不能完全应用于机场跑道建设中; 对于沥青混凝土道面的机场跑道多年冻土地基, 随着道面宽度的增加, 跑道地基稳定性降低, 道面宽度每增加1%, 地基0℃等温线约下降0.17%, 地基融土核最高温约上升0.46%, 道中地基融化深度约加深0.19%, 但当道面宽度超过35 m时, 道中地基融化深度趋于平稳; 相对于道中地基温度场, 道肩受道面宽度的影响较小, 当道面宽度超过25 m时, 其地基融化深度趋于平稳; 道中地基融化深度表达式相关系数为0.988 6, 相对误差在1%以内。

     

  • 图  1  机场跑道地基温度场模型(单位: m)

    Figure  1.  Model of airfield runway subgrade temperature field (unit: m)

    图  2  公路路基温度场模型(单位: m)

    Figure  2.  Model of highway subgrade temperature field (unit: m)

    图  3  1月机场跑道地基温度分布

    Figure  3.  Subgrade temperature distribution of airfield runway in Jan.

    图  4  1月公路路基温度分布

    Figure  4.  Subgrade temperature distribution of highway in Jan.

    图  5  4月机场跑道地基温度分布

    Figure  5.  Subgrade temperature distribution of airfield runway in Apr.

    图  6  4月公路路基温度分布

    Figure  6.  Subgrade temperature distribution of highway in Apr.

    图  7  8月机场跑道地基温度分布

    Figure  7.  Subgrade temperature distribution of airfield runway in Aug.

    图  8  8月公路路基温度分布

    Figure  8.  Subgrade temperature distribution of highway in Aug.

    图  9  11月机场跑道地基温度分布

    Figure  9.  Subgrade temperature distribution of airfield runway in Nov.

    图  10  11月公路路基温度分布

    Figure  10.  Subgrade temperature distribution of highway in Nov.

    图  11  机场跑道地基温度变化

    Figure  11.  Subgrade temperature changes of airfield runway

    图  12  公路路基温度变化

    Figure  12.  Subgrade temperature changes of highway

    图  13  30年内最大融深对比

    Figure  13.  Maximum melting depth contrast in 30 years

    图  14  道面板(单位: m)

    Figure  14.  Pavement panel (unit: m)

    图  15  传感器布置(单位: m)

    Figure  15.  Sensors placement (unit: m)

    图  16  道中数据对比

    Figure  16.  Data comparison of middle of runway

    图  17  道肩数据对比

    Figure  17.  Data comparison of shoulder of runway

    图  18  模型1的1月地基温度分布

    Figure  18.  Subgrade temperature distribution of model 1 in Jan.

    图  19  模型2的1月地基温度分布

    Figure  19.  Subgrade temperature distribution of model 2 in Jan.

    图  20  模型3的1月地基温度分布

    Figure  20.  Subgrade temperature distribution of model 3 in Jan.

    图  21  模型4的1月地基温度分布

    Figure  21.  Subgrade temperature distribution of model 4 in Jan.

    图  22  模型5的1月地基温度分布

    Figure  22.  Subgrade temperature distribution of model 5 in Jan.

    图  23  模型6的1月地基温度分布

    Figure  23.  Subgrade temperature distribution of model 6 in Jan.

    图  24  模型7的1月地基温度分布

    Figure  24.  Subgrade temperature distribution of model 7 in Jan.

    图  25  模型8的1月地基温度分布

    Figure  25.  Subgrade temperature distribution of model 8 in Jan.

    图  26  模型9的1月地基温度分布

    Figure  26.  Subgrade temperature distribution of model 9 in Jan.

    图  27  模型1道中地基温度变化

    Figure  27.  Subgrade temperature changes of middle of runway of model 1

    图  28  模型2道中地基温度变化

    Figure  28.  Subgrade temperature changes of middle of runway of model 2

    图  29  模型3道中地基温度变化

    Figure  29.  Subgrade temperature changes of middle of runway of model 3

    图  30  模型4道中地基温度变化

    Figure  30.  Subgrade temperature changes of middle of runway of model 4

    图  31  模型5道中地基温度变化

    Figure  31.  Subgrade temperature changes of middle of runway of model 5

    图  32  模型6道中地基温度变化

    Figure  32.  Subgrade temperature changes of middle of runway of model 6

    图  33  模型7道中地基温度变化

    Figure  33.  Subgrade temperature changes of middle of runway of model 7

    图  34  模型8道中地基温度变化

    Figure  34.  Subgrade temperature changes of middle of runway of model 8

    图  35  模型9道中地基温度变化

    Figure  35.  Subgrade temperature changes of middle of runway of model 9

    图  36  模型1道肩地基温度变化

    Figure  36.  Subgrade temperature changes of shoulder of runway of model 1

    图  37  模型2道肩地基温度变化

    Figure  37.  Subgrade temperature changes of shoulder of runway of model 2

    图  38  模型3道肩地基温度变化

    Figure  38.  Subgrade temperature changes of shoulder of runway of model 3

    图  39  模型4道肩地基温度变化

    Figure  39.  Subgrade temperature changes of shoulder of runway of model 4

    图  40  模型5道肩地基温度变化

    Figure  40.  Subgrade temperature changes of shoulder of runway of model 5

    图  41  模型6道肩地基温度变化

    Figure  41.  Subgrade temperature changes of shoulder of runway of model 6

    图  42  模型7道肩地基温度变化

    Figure  42.  Subgrade temperature changes of shoulder of runway of model 7

    图  43  模型8道肩地基温度变化

    Figure  43.  Subgrade temperature changes of shoulder of runway of model 8

    图  44  模型9道肩地基温度变化

    Figure  44.  Subgrade temperature changes of shoulder of runway of model 9

    图  45  道中最大融深

    Figure  45.  Maximum melting depths of middle of runway

    图  46  道中融深沿道面宽度的变化

    Figure  46.  Melting depth changes of middle of runway along pavement width

    图  47  道肩融深沿道面宽度的变化

    Figure  47.  Melting depth changes of shoulder of runway along pavement width

    表  1  A与ΔT取值

    Table  1.   Values of A and ΔT

    附面层参数 沥青面层 天然地面 公路左右边坡
    A 15.15 11.50 14.50
    ΔT 6.50 4.00 2.50
    下载: 导出CSV

    表  2  初始温度

    Table  2.   Initial temperatures

    深度/m 温度/℃ 深度/m 温度/℃ 深度/m 温度/℃ 深度/m 温度/℃
    0.5 6.11 3.0 -1.57 5.5 -2.12 8.0 -2.25
    1.0 2.62 3.5 -1.86 6.0 -2.10 8.5 -2.25
    1.5 0.55 4.0 -2.03 6.5 -2.15 9.0 -2.00
    2.0 -0.40 4.5 -2.03 7.0 -2.00 9.5 -2.25
    2.5 -1.35 5.0 -2.09 7.5 -2.25 10.0 -2.00
    下载: 导出CSV

    表  3  结构层物理参数

    Table  3.   Physical parameters of structure layers

    结构层 材料 密度/ (kg·m-3) 比热容/ (J·kg-1·℃-1) 导热系数/ (W·m-1·℃-1)
    基层 水泥稳定碎石 2 200 960 1.56
    垫层 级配砂砾 2 000 1 100 1.68
    下载: 导出CSV

    表  4  土的物理参数

    Table  4.   Physical parameters of soil

    参数 砂砾与碎石土 含卵石中细沙 含砾亚黏土 强风化泥岩
    干密度/ (kg·m-3) 1 800 1 700 1 300 1 500
    初始含水量/% 25 30 30 30
    融土骨架比热容/ (J·kg-1·℃-1) 790 840 840 840
    冻土骨架比热容/ (J·kg-1·℃-1) 710 730 750 750
    水的比热容/ (J·kg-1·℃-1) 4 182 4 182 4 182 4 182
    冰的比热容/ (J·kg-1·℃-1) 2 090 2 090 2 090 2 090
    融土导热系数/ (W·m-1·℃-1) 1.919 1.950 0.870 1.470
    冻土导热系数/ (W·m-1·℃-1) 1.980 2.690 1.220 1.820
    水分扩散系数/ (m2·s-1) 9.35×10-6 4.66×10-5 3.73×10-4 3.44×10-6
    冻结温度/℃ -0.20 -0.10 -0.19 -0.05
    水的冻结融化潜热/ (J·kg-1) 334 560 334 560 334 560 334 560
    经验系数 0.610 0 0.732 5 0.574 0 0.473 5
    下载: 导出CSV

    表  5  土的物理参数

    Table  5.   Physical parameters of soil

    岩土名称 天然含水量/% 干密度/ (g·cm-3) 融土比热容/ (J·kg-1·℃-1) 冻土比热容/ (J·kg-1·℃-1) 融土导热系数/ (W·m-1·℃-1) 冻土导热系数/ (W·m-1·℃-1)
    黏土 39.0 1.30 1 775.06 1 280.40 1.030 1.840
    淤泥质黏土 42.7 1.24 1 839.28 1 302.05 1.010 1.831
    粉质黏土 31.5 1.45 1 526.58 1 232.49 1.186 1.857
    下载: 导出CSV

    表  6  道面宽度

    Table  6.   Widths of pavement m

    模型 1 2 3 4 5 6 7 8 9
    道面宽度 18 25 30 35 40 45 50 55 60
    下载: 导出CSV
  • [1] 汪海年, 窦明健, 吴敏慧. 青藏高原冻土区路面类型对路基温度场影响的非线性分析[J]. 冰川冻土, 2005, 27 (2): 169-175. doi: 10.3969/j.issn.1000-0240.2005.02.003

    WANG Hai-nian, DOU Ming-jian, WU Min-hui. Nonlinear analysis of the influence of pavement types on embankment thermal regime in permafrost regions on the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2005, 27 (2): 169-175. (in Chinese). doi: 10.3969/j.issn.1000-0240.2005.02.003
    [2] HARLAN R L. Analysis of coupled heat-fluid transport in partially frozen soil[J]. Water Resource Research, 1973, 9 (5): 1314-1323. doi: 10.1029/WR009i005p01314
    [3] TAYLOR G S, LUTHIN J N. A model for coupled heat and moisture transfer during soil freezing[J]. Canadian Geotechnical Journal, 1978, 15 (4): 548-555. doi: 10.1139/t78-058
    [4] MALEVSKY-MALEVIC S P, MOLKENTIN E K, NADYOZHINA E D, et al. Numerical simulation of permafrost parameters distribution in Russia[J]. Cold Regions Science and Technology, 2001, 32 (1): 1-11. doi: 10.1016/S0165-232X(01)00018-0
    [5] RISEBOROUGH D W. The mean annual temperature at the top of permafrost, the TTOP model, and the effect of unfrozen water[J]. Permafrost and Periglacial Processes, 2002, 13 (2): 137-143. doi: 10.1002/ppp.418
    [6] RANKINEN K, KARVONEN T, BUTTERFIELD D. A simple model for predicting soil temperature in snow-covered and seasonally frozen soil: model description and testing[J]. Hydrology and Earth System Sciences, 2004, 8 (4): 706-716. doi: 10.5194/hess-8-706-2004
    [7] STETYUKHA V A. Numerical simulation of changes in the thermal condition of soils under the effect of channel change of a river bed[J]. Power Technology and Engineering, 2004, 38 (1): 27-29.
    [8] TAM A. Permafrost in Canada's subarctic region of Northern Ontario[D]. Toronto: University of Toronto, 2009.
    [9] ALFARO M C, CIRO G A, THIESSEN K J, et al. Case study of degrading permafrost beneath a road embankment[J]. Journal of Cold Regions Engineering, 2009, 23 (3): 93-111. doi: 10.1061/(ASCE)0887-381X(2009)23:3(93)
    [10] BUTEAU S, FORTIER R, ALLARD M. Permafrost weakening as a potential impact of climatic warming[J]. Journal of Cold Regions Engineering, 2010, 24 (1): 1-18. doi: 10.1061/(ASCE)0887-381X(2010)24:1(1)
    [11] DARROW M M. Thermal modeling of roadway embankments over permafrost[J]. Cold Regions Science and Technology, 2011, 65 (3): 474-487. doi: 10.1016/j.coldregions.2010.11.001
    [12] TREAT C C, WISSER D, MARCHENKO S, et al. Modelling the effects of climate change and disturbance on permafrost stability in northern organic soils[J]. Mires and Peat, 2013, 12 (2): 1-17.
    [13] 赖远明, 吴紫汪, 朱元林, 等. 寒区隧道温度场和渗流场耦合问题的非线性分析[J]. 中国科学: D辑, l999, 29 (增1): 21-26.

    LAI Yuan-ming, WU Zi-wang, ZHU Yuan-lin, et al. Nonlinear analysis for the coupled problem of temperature and seepage fields in cold regions tunnels[J]. Science in China: Series D, l999, 29 (S1): 21-26. (in Chinese).
    [14] 赖远明, 吴紫汪, 朱元林, 等. 寒区隧道温度场、渗流场和应力场耦合问题的非线性分析[J]. 岩土工程学报, 1999, 21 (5): 529-533. doi: 10.3321/j.issn:1000-4548.1999.05.001

    LAI Yuan-ming, WU Zi-wang, ZHU Yuan-lin, et al. Nonlinear analyses for the couple problem of temperature, seepage and stress fields in cold region tunnels[J]. Chinese Journal of Geotechnical Engineering, 1999, 21 (5): 529-533. (in Chinese). doi: 10.3321/j.issn:1000-4548.1999.05.001
    [15] LAI Yuan-ming, LIU Song-yu, WU Zi-wang, et al. Approximate analytical solution for temperature fields in cold regions circular tunnels[J]. Cold Regions Science and Technology, 2002, 34 (l): 43-49.
    [16] 王铁行, 胡长顺, 王秉纲, 等. 考虑多种因素的冻土路基温度场有限元方法[J]. 中国公路学报, 2000, 13 (4): 8-11. doi: 10.3321/j.issn:1001-7372.2000.04.002

    WANG Tie-xing, HU Chang-shun, WANG Bing-gang, et al. A finite element method for thermal field analysis of frozen soil subgrade on the consideration of all field-factors[J]. China Journal of Highway and Transport, 2000, 13 (4): 8-11. (in Chinese). doi: 10.3321/j.issn:1001-7372.2000.04.002
    [17] 梁波, 赵青海, 刘德仁. 青藏铁路北麓河试验段地温分布对比分析研究[J]. 岩石力学与工程学报, 2007, 26 (7): 1386-1392. doi: 10.3321/j.issn:1000-6915.2007.07.011

    LIANG Bo, ZHAO Qing-hai, LIU De-ren. Study on comparative analysis of ground temperature distribution of Beilu River test section in Qinghai-Tibet Railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26 (7): 1386-1392. (in Chinese). doi: 10.3321/j.issn:1000-6915.2007.07.011
    [18] 王大鹏, 傅智, 易洪, 等. 多年冻土区水泥混凝土路面下冻土路基温度场数值分析[J]. 公路交通科技, 2009, 26 (1): 45-50, 56. doi: 10.3969/j.issn.1002-0268.2009.01.009

    WANG Da-peng, FU Zhi, YI Hong, et al. Numerical simulation of thermal field of roadbed under cement concrete pavement in permafrost region[J]. Journal of Highway and Transportation Research and Development, 2009, 26 (1): 45-50, 56. (in Chinese). doi: 10.3969/j.issn.1002-0268.2009.01.009
    [19] 熊炜, 刘明贵, 张启衡, 等. 多年冻土区桩基温度场研究[J]. 岩土力学, 2009, 30 (6): 1658-1664. doi: 10.3969/j.issn.1000-7598.2009.06.023

    XIONG Wei, LIU Ming-gui, ZHANG Qi-heng, et al. Temperature distribution along piles in permafrost regions[J]. Rock and Soil Mechanics, 2009, 30 (6): 1658-1664. (in Chinese). doi: 10.3969/j.issn.1000-7598.2009.06.023
    [20] 李金平, 陈春燕, 章金钊. 多年冻土区沥青和水泥路面下路基的热稳定性特征[J]. 公路交通科技, 2013, 30 (3): 17-24. doi: 10.3969/j.issn.1002-0268.2013.03.004

    LI Jin-ping, CHEN Chun-yan, ZHANG Jin-zhao. Heat stability characteristics of embankment of asphalt pavement and cement pavement in permafrost regions[J]. Journal of Highway and Transportation Research and Development, 2013, 30 (3): 17-24. (in Chinese). doi: 10.3969/j.issn.1002-0268.2013.03.004
    [21] 赵晨. 多年冻土区宽幅路基温度场规律研究[D]. 南京: 东南大学, 2015.

    ZHAO Chen. The research of temperature field of wide embankment in permafrost regions[D]. Nanjing: Southeast University, 2015. (in Chinese).
    [22] 张万辉, 秦添. 多年冻土区天然温度场数值模拟及验证分析[J]. 中国水运, 2016, 16 (6): 114-118. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSUX201606042.htm

    ZHANG Wan-hui, QIN Tian. Numerical simulation and verification analysis of natural temperature field in permafrost region[J]. China Water Transport, 2016, 16 (6): 114-118. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZSUX201606042.htm
    [23] 马勤国, 赖远明, 吴道勇. 多年冻土区高等级公路路基温度场研究[J]. 中南大学学报(自然科学版), 2016, 47 (7): 2415-2423. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201607032.htm

    MA Qin-guo, LAI Yuan-ming, WU Dao-yong. Analysis of temperature field of high grade highway embankment in permafrost regions[J]. Journal of Central South University (Science and Technology), 2016, 47 (7): 2415-2423. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201607032.htm
    [24] 权磊, 田波, 牛开民, 等. 青藏高原高等级道路路基路面温度变化特征[J]. 交通运输工程学报, 2017, 17 (2): 21-30. doi: 10.3969/j.issn.1671-1637.2017.02.003

    QUAN Lei, TIAN Bo, NIU Kai-min, et al. Temperature variation properties of pavements and subgrades for high-grade roads on Qinghai-Tibet Plateau[J]. Journal of Traffic and Transportation Engineering, 2017, 17 (2): 21-30. (in Chinese). doi: 10.3969/j.issn.1671-1637.2017.02.003
    [25] 陈之祥, 李顺群, 王杏杏, 等. 热参数对冻土温度场的影响及敏感性分析[J]. 水利水电技术, 2017, 48 (5): 136-141. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ201705022.htm

    CHEN Zhi-xiang, LI Shun-qun, WANG Xing-xing, et al. Analysis on impact and sensitivity of thermal parameter on frozen soil temperature field[J]. Water Resources and Hydropower Engineering, 2017, 48 (5): 136-141. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ201705022.htm
    [26] 商允虎, 牛富俊, 刘明浩, 等. 多年冻土区桥梁工程桩基础服役期温度场研究[J]. 岩石力学与工程学报, 2017, 36 (9): 2313-2323. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201709026.htm

    SHANG Yun-hu, NIU Fu-jun, LIU Ming-hao, et al. Long-term effect of a pile foundation on ground temperatures in permafrost regions[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36 (9): 2313-2323. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201709026.htm
    [27] 赵永峰, 谢强, 王子江, 等. 川藏铁路季节性冻土区粗颗粒土边坡温度场特征[J]. 铁道建筑, 2017 (5): 95-99. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201705026.htm

    ZHAO Yong-feng, XIE Qiang, WANG Zi-jiang, et al. Characteristics of temperature field of coarse-grained soil slope in seasonal frozen soil region along Sichuan-Tibet Railway[J]. Railway Engineering, 2017 (5): 95-99. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201705026.htm
    [28] 陈瑞考, 宋玲, 魏鹏, 等. 季节冻土区梯形混凝土渠道冬季停水与过水运行方式对温度场的影响研究[J]. 水利水电技术, 2018, 49 (2): 132-138. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ201802021.htm

    CHEN Rui-kao, SONG Ling, WEI Peng, et al. Study on influences from water cut-off and water passing operation modes of trapezoidal concrete canal in seasonal frozen-soil region in winter on temperature field[J]. Water Resources and Hydropower Engineering, 2018, 49 (2): 132-138. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ201802021.htm
    [29] 汪水银. 多年冻土地区填方路基温度场分布特征[J]. 公路交通科技, 2018, 35 (3): 28-35. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201803004.htm

    WANG Shui-yin. Temperature field distribution characteristics of filled roadbed in permafrost region[J]. Journal of Highway and Transportation Research and Development, 2018, 35 (3): 28-35. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201803004.htm
    [30] 朱林楠. 高原冻土区不同下垫面的附面层研究[J]. 冰川冻土, 1988, 10 (1): 8-14. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT198801001.htm

    ZHU Lin-nan. Study of the adherent layer on different types of ground in permafrost regions on the Qinghai-Xizang Plateau[J]. Journal of Glaciology and Geocryology, 1988, 10 (1): 8-14. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT198801001.htm
    [31] 金龙, 汪双杰, 陈建兵, 等. 基于变形分析的多年冻土地区路基高度效应研究[J]. 中外公路, 2013, 33 (3): 22-29. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201303007.htm

    JIN Long, WANG Shuang-jie, CHEN Jian-bing, et al. Study on subgrade height effect in permafrost regions based on deformation analysis[J]. Journal of China and Foreign Highway, 2013, 33 (3): 22-29. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201303007.htm
    [32] 朱志武, 宋顺成. 冻土地区路基温度场数值分析[J]. 路基工程, 2008 (2): 18-19. https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC200802010.htm

    ZHU Zhi-wu, SONG Shun-cheng. Numerical analysis of temperature field of subgrade in permafrost region[J]. Subgrade Engineering, 2008 (2): 18-19. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC200802010.htm
    [33] 汪海年. 青藏高原多年冻土地区路基温度场研究[D]. 西安: 长安大学, 2004.

    WANG Hai-nian. Study on the temperature field of subgrade in permafrost regions of the Qinghai-Tibet Plateau[D]. Xi'an: Chang'an University, 2004. (in Chinese).
    [34] 申骞. 冻土路基温度场的试验研究及仿真分析[D]. 石家庄: 石家庄铁道大学, 2007.

    SHEN Qian. Experiment researchon the distribution of temperature field in frozen soil embankment and simulation analysis[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2007. (in Chinese).
    [35] 汪双杰. 高原多年冻土区公路路基稳定及预测技术研究[D]. 南京: 东南大学, 2005.

    WANG Shuang-jie. Study on highway subgrade stabilization and predication technique in plateau permafrost region[D]. Nanjing: Southeast University, 2005. (in Chinese).
  • 加载中
图(47) / 表(6)
计量
  • 文章访问数:  1787
  • HTML全文浏览量:  386
  • PDF下载量:  1140
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-19
  • 刊出日期:  2019-02-25

目录

    /

    返回文章
    返回