Bending performance of circle tubular up-flange steel and concrete composite girder with concrete flange
-
摘要: 考虑不同加载方式与下翼缘宽度, 对3根带混凝土翼板的圆管翼缘钢-混凝土组合梁进行抗弯性能试验, 分析了试验梁的抗弯承载性能与破坏形态; 基于试验梁的抗弯特征, 推导了组合梁屈服弯矩和极限弯矩简化计算公式。研究结果表明: 试验梁均发生典型的塑性弯曲破坏, 稳定性良好; 达到极限承载力时, 梁端处上翼缘钢管与混凝土翼板相对滑移均小于0.43 mm, 试验梁体现了良好的协同工作性能; 随下翼缘宽度的增加, 试验梁刚度与承载力增大, 对于下翼缘宽度分别为150、260、300 mm的试验梁, 其屈服弯矩的比值为1∶1.44∶1.55, 极限承载力的比值为1∶1.31∶1.40;随着试验梁承受弯矩的增大, 当中性轴上升至混凝土翼板时, 钢管混凝土处于受拉状态, 可不考虑钢管与内填混凝土的套箍效应, 而当塑性中性轴位于上翼缘钢管混凝土内时, 可不计入该套箍作用对极限抗弯承载力的影响, 但其可促进延性的继续发展; 试验梁的位移延性系数均大于3.35, 延性较好; 屈服弯矩、极限弯矩理论计算值与试验值的比值分别为1.02~1.04、0.96~1.03, 吻合良好, 因此, 所出提出的简化理论计算公式简单、可靠。Abstract: The different loading methods and widths of bottom flange were considered, the bending behavior experiments were conducted for 3 circle tubular up-flange steel and concrete composite girders with concrete flange, and their bending performances and failure modes were analyzed. Based on the bending characteristics of test girders, the simplified formulas of yielding moment and ultimate moment of composite girder were derived. Research result shows that all test girders fail in typically plastic bending mode and have satisfied stability. When attaining the ultimate capacity, the measured slips between the upper flange steel tube and concrete flange are no more than 0.43 mm at the beam ends, which shows the excellent overall working ability for the test beams. The stiffness and bending capacity of test girder increase with increasing the width of bottom flange. The width of bottom flange is 150, 260, and 300 mm, respectively, the corresponding ratio of yield moments is 1∶ 1.44∶ 1.55, and the ratio of ultimate bending capacities is 1∶ 1.31∶ 1.40. With the bending moment of test girder increasing, when the plastic neutral axis rises to the concrete flange, the concrete filled steel tubular flange is in tension, and the confinement effect between the steel tube and inner filled concrete may be neglected. When the plastic neutral axis locates in the up-flange concrete filled steel tube, the confinement effect between the steel tube and inner filled concrete may be neglected in the calculation of ultimate bending capacity, but it may enhance the ductility of test girder. The displacement ductility coefficients of test girders are all greater than 3.35, therefore, the test girders have good ductility. The ratios of theoretical to experimental values of yield bending moment and ultimate bending moment are between 1.02 and 1.04, and between 0.96 and 1.03, respectively, which shows good agreement between the theoretical calculation results and test results. Thus, the simplified theoretical formulas are simple and reliable.
-
表 1 试验梁参数
Table 1. Parameters of test girders
试验梁 下翼缘宽度/mm 中性轴高度/mm 剪跨长度/mm 加载方案 B1 150 342 1 500 双点 B2 260 318 2 000 单点 B3 300 310 2 000 双点/单点 表 2 屈服弯矩理论计算值与测试值对比
Table 2. Comparison of theoretical calculated values and measured values for yielding moment
试验梁 Myc/ (kN·m) My/ (kN·m) Myc/My B1 409.9 397.5 1.03 B2 595.8 570.5 1.04 B3 662.4 649.4 1.02 表 3 极限弯矩理论计算值与测试值对比
Table 3. Comparison of theoretical calculated values and measured values for ultimate moment
试验梁 Muc/ (kN·m) Mu/ (kN·m) Muc/Mu B1 568.0 594.2 0.96 B2 784.5 780.1 0.99 B3 857.1 830.3 1.03 -
[1] 聂建国, 余志武. 钢-混凝土组合梁在我国的研究及应用[J]. 土木工程学报, 1999, 32 (2): 3-8. doi: 10.3321/j.issn:1000-131X.1999.02.001NIE Jian-guo, YU Zhi-wu. Research and practice of composite steel-concrete beams in China[J]. China Civil Engineering Journal, 1999, 32 (2): 3-8. (in Chinese). doi: 10.3321/j.issn:1000-131X.1999.02.001 [2] MERTZ D R. Trends in design and construction of steel highway bridges in the United States[J]. Progress in Structural Engineering and Materials, 2001, 3: 5-12. doi: 10.1002/pse.56 [3] 潘际炎. 中国钢桥[J]. 中国工程科学, 2007, 9 (7): 18-26. doi: 10.3969/j.issn.1009-1742.2007.07.003PAN Ji-yan. Steel bridges in China[J]. Engineering Science, 2007, 9 (7): 18-26. (in Chinese). doi: 10.3969/j.issn.1009-1742.2007.07.003 [4] 冯正霖. 我国桥梁技术发展战略的思考[J]. 中国公路, 2015 (11): 38-41. doi: 10.3969/j.issn.1006-3897.2015.11.003FENG Zheng-lin. Thinking on the development strategy of bridge technology in China[J]. China Highway, 2015 (11): 38-41. (in Chinese). doi: 10.3969/j.issn.1006-3897.2015.11.003 [5] 方秦汉, 高宗余, 李加武. 中国铁路钢桥的发展历程及展望[J]. 建筑科学与工程学报, 2008, 25 (4): 1-5. doi: 10.3321/j.issn:1673-2049.2008.04.001FANG Qin-han, GAO Zong-yu, LI Jia-wu. Development course and prospect of steel railway bridges in China[J]. Journal of Architecture and Civil Engineering, 2008, 25 (4): 1-5. (in Chinese). doi: 10.3321/j.issn:1673-2049.2008.04.001 [6] 王春生, 段兰, 王继明, 等. 基于混合设计的高性能钢梁抗弯性能及延性试验[J]. 中国公路学报, 2012, 25 (2): 81-89. doi: 10.3969/j.issn.1001-7372.2012.02.014WANG Chun-sheng, DUAN Lan, WANG Ji-ming, et al. Bending behavior and ductility test of high performance steel beam based on hybrid design[J]. China Journal of Highway and Transport, 2012, 25 (2): 81-89. (in Chinese). doi: 10.3969/j.issn.1001-7372.2012.02.014 [7] 段兰, 王春生, 王世超, 等. 高强度工字钢梁腹板抗剪性能试验[J]. 中国公路学报, 2017, 30 (3): 65-71. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201703007.htmDUAN Lan, WANG Chun-sheng, WANG Shi-chao, et al. Web shear behavior test for high strength I steel girders[J]. China Journal of Highway and Transport, 2017, 30 (3): 65-71. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201703007.htm [8] KAYSER C R, SWANSON J A, LINZELL D G. Characterization of material properties of HPS485W (70W) TMCP for bridge girder applications[J]. Journal of Bridge Engineering, 2006, 11 (1): 99-108. doi: 10.1061/(ASCE)1084-0702(2006)11:1(99) [9] AZIZINAMINI A, BARTH K, DEXTER R, et al. High performance steel: research front—historical account of research activities[J]. Journal of Bridge Engineering, 2004, 9 (3): 212-217. [10] SMITH A. Design of HPS bridge girders with tubular flange[D]. Bethlehem: Lehigh University, 2001. [11] SAUSE R, KIM B G, WIMER M R. Experimental study of tubular flange girder[J]. Journal of Structural Engineering, 2008, 124 (3): 384-392. [12] 王春生, 常全禄, 翟晓亮, 等. 管翼缘组合梁桥设计与结构分析[J]. 钢结构, 2015, 30 (6): 17-21.WANG Chun-sheng, CHANG Quan-lu, ZHAI Xiao-liang, et al. Design and structure analysis of tubular flange composite girder bridge[J]. Steel Construction, 2015, 30 (6): 17-21. (in Chinese). [13] ABBAS H H, SAUSE R, DRIVER R G. Analysis of flange transverse bending of corrugated web I-girders under in-plane loads[J]. Journal of Structural Engineering, 2007, 133 (3): 347-355. [14] SAUSE R. Innovative steel bridge girders with tubular flanges[J]. Structure and Infrastructure Engineering, 2015, 11 (4): 450-465. [15] FAN Zhuo, SAUSE R. Behavior of horizontally curved steel tubular flange bridge girders[R]. Bethlehem: Lehigh University, 2007. [16] SAUSE R, ABBAS H, KIM B G, et al. Innovative high performance steel girders for highway bridges[C]∥ASCE. Proceedings of the International Conference on High Performance Materials in Bridges. Reston: ASCE, 2003: 309-318. [17] KIM B G, SAUSE R. High performance steel girders with tubular flange[R]. Bethlehem: Lehigh University, 2005. [18] KIM B G, SAUSE R. Lateral torsional buckling strength of tubular flange girders[J]. Journal of Structural Engineering, 2008, 134 (6): 902-910. [19] 王春生, 朱经纬, 翟晓亮, 等. 双管翼缘钢-混凝土新型组合梁抗弯性能试验[J]. 中国公路学报, 2017, 30 (3): 147-158. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201703016.htmWANG Chun-sheng, ZHU Jing-wei, ZHAI Xiao-liang, et al. Flexural behavior experimental of steel and concrete composite girder with double tubular flanges[J]. China Journal of Highway and Transport, 2017, 30 (3): 147-158. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201703016.htm [20] 朱经纬, 王春生, 翟晓亮, 等. 圆管翼缘钢-混凝土新型组合梁极限抗弯承载力与延性[J]. 交通运输工程学报, 2018, 18 (1): 29-41. http://transport.chd.edu.cn/article/id/201801003ZHU Jing-wei, WANG Chun-sheng, ZHAI Xiao-liang, et al. Ultimate flexural strength and ductility of steel and concrete composite girder with circle tubular flange[J]. Journal of Traffic and Transportation Engineering, 2018, 18 (1): 29-41. (in Chinese). http://transport.chd.edu.cn/article/id/201801003 [21] 翟晓亮. 带钢管混凝土上翼缘的钢-高性能混凝土组合梁抗剪性能试验研究[D]. 西安: 长安大学, 2009.ZHAI Xiao-liang. Experimental investigation of shearing behavior for steel and high performance concrete composite girders with concrete filled tubular up-flanges[D]. Xi'an: Chang'an University, 2009. (in Chinese). [22] 朱经纬. 新型管翼缘组合梁抗弯性能试验研究[D]. 西安: 长安大学, 2012.ZHU Jing-wei. Experimental investigation of bending behavior for the new style tubular flange composite girder[D]. Xi'an: Chang'an University, 2012. (in Chinese). [23] WIMER M R, SAUSE R. Rectangular tubular flange girders with corrugated and flat webs[R]. Bethlehem: Lehigh University, 2004. [24] HASSANEIN M F, KHAROOB O F, HADIDY A M. Lateral-torsional buckling of hollow tubular flange plate girders with slender stiffened webs[J]. Thin-Walled Structures, 2013, 65: 49-61. [25] HASSANEIN M F, KHAROOB O F. Shear capacity of stiffened plate girders with compression tubular flanges and slender webs[J]. Thin-Walled Structures, 2013, 70: 81-92. [26] DONG Jun. Analytically study of horizontally curved hollow tubular flange girders[D]. Bethlehem: Lehigh University, 2008. [27] MANS P, YAKEL A J, AZIZINAMINI A. Full-scale testing of composite plate girders constructed using 485-MPa high-performance steel[J]. Journal of Bridge Engineering, 2001, 6 (6): 598-604.