留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

曲面混凝土构件内弧粘贴FRP弦剥离效应

任伟 郭林 杨旸 张德强

任伟, 郭林, 杨旸, 张德强. 曲面混凝土构件内弧粘贴FRP弦剥离效应[J]. 交通运输工程学报, 2019, 19(1): 60-70. doi: 10.19818/j.cnki.1671-1637.2019.01.007
引用本文: 任伟, 郭林, 杨旸, 张德强. 曲面混凝土构件内弧粘贴FRP弦剥离效应[J]. 交通运输工程学报, 2019, 19(1): 60-70. doi: 10.19818/j.cnki.1671-1637.2019.01.007
REN Wei, GUO Lin, YANG Yang, ZHANG De-qiang. String debonding effect of curved RC member reinforced by bonding FRP in intrados[J]. Journal of Traffic and Transportation Engineering, 2019, 19(1): 60-70. doi: 10.19818/j.cnki.1671-1637.2019.01.007
Citation: REN Wei, GUO Lin, YANG Yang, ZHANG De-qiang. String debonding effect of curved RC member reinforced by bonding FRP in intrados[J]. Journal of Traffic and Transportation Engineering, 2019, 19(1): 60-70. doi: 10.19818/j.cnki.1671-1637.2019.01.007

曲面混凝土构件内弧粘贴FRP弦剥离效应

doi: 10.19818/j.cnki.1671-1637.2019.01.007
基金项目: 

国家自然科学基金项目 51678061

陕西省自然科学基础研究计划项目 2016JM5043

详细信息
    作者简介:

    任伟(1975-), 男, 陕西西安人, 长安大学副教授, 工学博士, 从事桥梁结构和加固研究

  • 中图分类号: U445.72

String debonding effect of curved RC member reinforced by bonding FRP in intrados

More Information
    Author Bio:

    REN Wei(1975-), male, associate professor, PhD, rw@chd.edu.cn

  • 摘要: 进行了26个曲面构件的FRP-混凝土界面粘贴试验, 研究了混凝土强度、FRP粘贴层数、FRP粘贴长度与构件曲率对粘贴强度、界面应变与破坏机理的影响。研究结果表明: 曲面混凝土构件内弧粘贴FRP易出现3种破坏形态: 弦剥离破坏、FRP在裂缝处被拉断和FRP在试件裂缝一侧发生剥离, 其中构件曲率越大, 越容易发生弦剥离破坏, 小曲率构件多发生FRP拉断破坏; 随外荷载的增大, FRP应变峰值有一个向后传递的变化过程, 说明沿纤维长度方向的FRP并不是全部参与工作, 存在一个有效工作(粘贴) 长度; 对本试验数据采用虚拟零点方法分析得出, 曲面混凝土构件内弧粘贴FRP有效粘贴长度约为14 cm; 曲率对粘贴强度影响显著, 曲率增大, 纤维应变梯度增大, 有效粘贴长度变小, 粘贴强度降低; 曲率相同时, 纤维层数越多, 沿纤维方向应变分布越均匀, 粘贴强度越大, 但是这一增长并非与FRP层数成线性关系, 2层纤维粘贴强度约为1层的1.5倍; 当纤维层数增加时, 粘贴层法向应力增大较快, 试件更易发生弦剥离破坏, 这种破坏是由法向粘贴应力与面内剪应力的耦合效应引起的; 粘贴层应力函数可用内弧曲率圆心角的余弦函数表示, 当矢高分别为30、60、90 mm时, 构件平均误差分别为7.7%、2.4%与8.8%, 因此, 函数精度较高。

     

  • 图  1  试件尺寸(单位: mm)

    Figure  1.  Specimen sizes (unit: mm)

    图  2  平面粘贴方案(单位: mm)

    Figure  2.  Planar bonding scheme (unit: mm)

    图  3  曲面粘贴方案(单位: mm)

    Figure  3.  Curved surface bonding scheme (unit: mm)

    图  4  应变测点(单位: mm)

    Figure  4.  Strain measuring points (unit: mm)

    图  5  弦剥离破坏

    Figure  5.  String debonding failures

    图  6  拉断破坏

    Figure  6.  Tensile failure

    图  7  剥离破坏

    Figure  7.  Debonding failure

    图  8  混凝土强度对极限荷载的影响

    Figure  8.  Effect of concrete strength on ultimate load

    图  9  曲率(矢高) 对极限强度的影响

    Figure  9.  Effect of curvature (vector height) on ultimate strength

    图  10  粘贴长度对极限强度的影响

    Figure  10.  Effect of bonding length on ultimate strength

    图  11  粘贴层数对极限强度的影响

    Figure  11.  Effect of bonding layer number on ultimate strength

    图  12  不同荷载时试件FRP应变曲线

    Figure  12.  FRP strain curves of specimens under different loads

    图  13  不同矢高时试件FRP应变曲线

    Figure  13.  FRP strain curves of speciments under different vector heights

    图  14  粘贴层应力

    Figure  14.  Stresses of bonding layer

    图  15  纤维应变对比

    Figure  15.  Comparison of fiber strains

    表  1  试件参数

    Table  1.   Specimen parameters

    编号 混凝土等级 粘贴层数 粘贴长度/mm 矢高/mm
    C30-1-175-0 C30 1 175 0
    C30-1-125-30 1 125 30
    C30-1-175-30 1 175 30
    C30-1-225-30 1 225 30
    C30-2-175-30 2 175 30
    C30-1-125-60 1 125 60
    C30-1-175-60 1 175 60
    C30-1-225-60 1 225 60
    C30-2-175-60 2 175 60
    C30-1-125-90 1 125 90
    C30-1-175-90 1 175 90
    C30-1-225-90 1 225 90
    C30-2-175-90 2 175 90
    C40-1-175-0 C40 1 175 0
    C40-1-125-30 1 125 30
    C40-1-175-30 1 175 30
    C40-1-225-30 1 225 30
    C40-2-175-30 2 175 30
    C40-1-125-60 1 125 60
    C40-1-175-60 1 175 60
    C40-1-225-60 1 225 60
    C40-2-175-60 2 175 60
    C40-1-125-90 1 125 90
    C40-1-175-90 1 175 90
    C40-1-225-90 1 225 90
    C40-2-175-90 2 175 90
    下载: 导出CSV

    表  2  试验结果

    Table  2.   Test results

    试件编号 极限承载力/kN 破坏形态
    C30-1-175-0 52.82 P2
    C30-1-125-30 45.13 P3
    C30-1-175-30 45.77 P2
    C30-1-225-30 46.25 P3
    C30-2-175-30 53.16 P1
    C30-1-125-60 42.84 P1
    C30-1-175-60 43.24 P1
    C30-1-225-60 43.84 P1
    C30-2-175-60 52.25 P1
    C30-1-125-90 40.28 P1
    C30-1-175-90 34.40 P1
    C30-1-225-90 39.74 P1
    C30-2-175-90 52.25 P1
    C40-1-175-0 53.12 P2
    C40-1-125-30 48.21 P2
    C40-1-175-30 48.77 P2
    C40-1-225-30 49.73 P1
    C40-2-175-30 54.22 P3
    C40-1-125-60 45.29 P1
    C40-1-175-60 46.14 P1
    C40-1-225-60 46.89 P1
    C40-2-175-60 54.99 P1
    C40-1-125-90 38.70 P1
    C40-1-175-90 39.31 P1
    C40-1-225-90 40.92 P1
    C40-2-175-90 54.99 P1
    下载: 导出CSV
  • [1] 张剑, 叶见曙, 王景全, 等. 预应力混杂碳/玻璃(C/G) 纤维布加固RC梁的应力重分布[J]. 交通运输工程学报, 2017, 17 (1): 45-52. doi: 10.3969/j.issn.1671-1637.2017.01.006

    ZHANG Jian, YE Jian-shu, WANG Jing-quan, et al. Stress redistribution of RC beams strengthened with prestressed hybrid carbon/glass (C/G) fiber cloth[J]. Journal of Traffic and Transportation Engineering, 2017, 17 (1): 45-52. (in Chinese). doi: 10.3969/j.issn.1671-1637.2017.01.006
    [2] MEI Kui-hua, LI Ya-juan, LU Zhi-tao. Application study on the first cable-stayed bridge with CFRP cables in China[J]. Journal of Traffic and Transportation Engineering (English Edition), 2015, 2 (4): 242-248. doi: 10.1016/j.jtte.2015.05.004
    [3] 谢建和, 孙明炜, 郭永昌, 等. FRP加固受损RC梁受弯剥离承载力预测模型[J]. 中国公路学报, 2014, 27 (12): 73-79. doi: 10.3969/j.issn.1001-7372.2014.12.009

    XIE Jian-he, SUN Ming-wei, GUO Yong-chang, et al. Prediction model for debonding bearing capacity of damaged reinforced concrete beam flexurally strengthenecl with fiber reinforced polymer[J]. China Journal of Highway and Transport, 2014, 27 (12): 73-79. (in Chinese). doi: 10.3969/j.issn.1001-7372.2014.12.009
    [4] REN Wei, SNEED L H, GAI Yi-ting, et al. Test results and nonlinear analysis of RC T-beams strengthened by bonded steel plates[J]. International Journal of Concrete Structures and Materials, 2015, 9 (2): 133-143. doi: 10.1007/s40069-015-0098-3
    [5] 李炳宏, 江世永, 飞渭, 等. 纤维增强塑料筋混凝土梁抗弯设计数值分析[J]. 长安大学学报(自然科学版), 2011, 31 (5): 50-56. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201105010.htm

    LI Bing-hong, JIANG Shi-yong, FEI Wei, et al. Numerical analysis of flexural design of concrete beams reinforced with FRP bars[J]. Journal of Chang'an University (Natural Science Edition), 2011, 31 (5): 50-56. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201105010.htm
    [6] ZHOU Ying-wu, WU Yu-fei, YUN Yan-chun. Analytical modeling of the bond-slip relationship at FRP-concrete interfaces for adhesively-bonded joints[J]. Composites Part B: Engineering, 2010, 41 (6): 423-433. doi: 10.1016/j.compositesb.2010.06.004
    [7] KO H, MATTHYS S, PALMIERI A, et al. Development of a simplified bond stress-slip model for bonded FRP-concrete interfaces[J]. Construction and Building Materials, 2014, 68: 142-157. doi: 10.1016/j.conbuildmat.2014.06.037
    [8] SELMAN E, ALVER N. A modified fiber-reinforced plastics concrete interface bond-slip law for shear-strengthened RC elements under cyclic loading[J]. Polymer Composites, 2016, 37 (12): 3373-3383. doi: 10.1002/pc.23535
    [9] YUAN Hong, LU Xu-sheng, HUI D, et al. Studies on FRP-concrete interface with hardening and softening bond-slip law[J]. Composite Structures, 2012, 94 (12): 3781-3792. doi: 10.1016/j.compstruct.2012.06.009
    [10] YANG Qi-fei, MENG Qing-lin. Ultimate slip between FRP and concrete on their interface[J]. Advanced Materials Research, 2011, 383-390: 852-855. doi: 10.4028/www.scientific.net/AMR.383-390.852
    [11] YIN Yu-shi, FAN Ying-fang. Research on interfacial bond-slip constitutive relation between FRP and concrete based on two parameters[J]. IOP Conference Series: Earth and Environmental Science, 2017, 108 (2): 584-587.
    [12] 施嘉伟, 朱虹, 吴智深, 等. FRP片材-混凝土界面应变率效应试验研究[J]. 土木工程学报, 2012, 45 (12): 99-107. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201212012.htm

    SHI Jia-wei, ZHU Hong, WU Zhi-shen, et al. Experimental study of the strain rate effect of FRP sheet-concrete interface[J]. China Civil Engineering Journal, 2012, 45 (12): 99-107. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201212012.htm
    [13] LEE Y J, BOOTHBY T E, BAKIS C E, et al. Slip modulus of FRP sheets bonded to concrete[J]. Journal of Composites for Construction, 1999, 3 (4): 161-167. doi: 10.1061/(ASCE)1090-0268(1999)3:4(161)
    [14] WU Zhi-shen, ISLAM S M, SAID H. A three-parameter bond strength model for FRP-concrete interface[J]. Journal of Reinforced Plastics and Composites, 2009, 28 (19): 2309-2323. doi: 10.1177/0731684408091961
    [15] GRAVINA R J, AYDIN H, VISINTIN P, Extraction and analysis of bond-slip characteristics in deteriorated FRP-to-concrete joints using a mechanics-based approach[J]. Journal of Materials in Civil Engineering, 2017, 29 (6): 04017013-1-14.
    [16] 潘毅, 吴晓飞, 郭瑞, 等. 长期荷载作用下FRP约束混凝土应力-应变关系分析模型[J]. 建筑结构学报, 2017, 38 (10): 139-148. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201710017.htm

    PAN Yi, WU Xiao-fei, GUO Rui, et al. Analysis-oriented stress-strain model of FRP-confined concrete under long-term sustained load[J]. Journal of Building Structures, 2017, 38 (10): 139-148. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201710017.htm
    [17] YAO J, TENG J G, CHEN J F. Experimental study on FRP-to-concrete bonded joints[J]. Composites Part B: Engineering, 2005, 36 (2): 99-113. doi: 10.1016/j.compositesb.2004.06.001
    [18] BENRAHOU K H, ADDA BEDIA E A, BENYOUCEF S, et al. Interfacial stresses in damaged RC beams strengthened with externally bonded CFRP plate[J]. Materials Science and Engineering: A, 2006, 432 (1/2): 12-19.
    [19] 陆新征, 叶列平, 滕锦光, 等. FRP-混凝土界面粘结滑移本构模型[J]. 建筑结构学报, 2005, 26 (4): 10-18. doi: 10.3321/j.issn:1000-6869.2005.04.002

    LU Xin-zheng, YE Lie-ping, TENG Jin-guang, et al. Bond-slip model for FRP-to-concrete interface[J]. Journal of Building Structures, 2005, 26 (4): 10-18. (in Chinese). doi: 10.3321/j.issn:1000-6869.2005.04.002
    [20] WU Zhi-gen, LIU Yi-hua. Singular stress field near interface edge in orthotropic/isotropic bi-materials[J]. International Journal of Solids and Structures, 2010, 47 (17): 2328-2335. doi: 10.1016/j.ijsolstr.2010.04.033
    [21] 杨德厚. 曲轴构件FRP-混凝土界面粘结试验研究[D]. 西安: 长安大学, 2014.

    YANG De-hou. Bonding experiment research of crankshaft specimen FRP-concrete interface[D]. Xi'an: Chang'an University, 2014. (in Chinese).
    [22] KHAN M A, EL-RIMAWI J, SILBERSCHMIDT V V. Relative behaviour of premature failures in adhesively plated RC beam using controllable and existing parameters[J]. Composite Structures, 2017, 180: 75-87. doi: 10.1016/j.compstruct.2017.08.006
    [23] ALAM M S, HUSSEIN A. Relationship between the shear capacity and the flexural cracking load of FRP reinforced concrete beams[J]. Construction and Building Materials, 2017, 154: 819-828. doi: 10.1016/j.conbuildmat.2017.08.006
    [24] AL-ABDWAIS A H, AL-MAHAIDI R S. Bond properties between carbon fibre reinforced polymer (CFRP) textile and concrete using modified cement-based adhesive[J]. Construction and Building Materials, 2017, 154: 983-992. doi: 10.1016/j.conbuildmat.2017.08.027
    [25] HERBRAND M, ADAM V, CLASSEN M, et al. Strengthening of existing bridge structures for shear and bending with carbon textile-reinforced mortar[J]. Materials, 2017, 10 (9): 1-15.
    [26] RAOOF S M, KOUTAS L N, BOURNAS D A. Bond between textile-reinforced mortar (TRM) and concrete substrates: experimental investigation[J]. Composites Part B: Engineering, 2016, 98: 350-361. doi: 10.1016/j.compositesb.2016.05.041
    [27] DALALBASHI A, GHIASSI B, OLIVEIRA D V, et al. Fiber-to-mortar bond behavior in TRM composites: effect of embedded length and fiber configuration[J]. Composites Part B: Engineering, 2018, 152: 43-57.
    [28] CAGGEGI C, LANOYE E, DJAMA K, et al. Tensile behaviour of a basalt TRM strengthening system: influence of mortar and reinforcing textile ratios[J]. Composites Part B: Engineering, 2017, 130: 90-102.
    [29] D'ANTINO T, CARLONI C, SNEED L H, et al. Matrix-fiber bond behavior in PBO FRCM composites: a fracture mechanics approach[J]. Engineering Fracture Mechanics, 2014, 117: 94-111.
    [30] SNEED L H, D'ANTINO T, CARLONI C. Investigation of bond behavior of polyparaphenylene benzobisoxazole fiber-reinforced cementitious matrix composite-concrete interface[J]. ACI Materials Journal, 2014, 111 (5): 569-580.
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  1182
  • HTML全文浏览量:  105
  • PDF下载量:  1002
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-11
  • 刊出日期:  2019-02-25

目录

    /

    返回文章
    返回