留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

送风形式对飞机座舱引气污染物扩散影响

杨建忠 马博文 陈希远 王振斌

杨建忠, 马博文, 陈希远, 王振斌. 送风形式对飞机座舱引气污染物扩散影响[J]. 交通运输工程学报, 2019, 19(1): 108-118. doi: 10.19818/j.cnki.1671-1637.2019.01.011
引用本文: 杨建忠, 马博文, 陈希远, 王振斌. 送风形式对飞机座舱引气污染物扩散影响[J]. 交通运输工程学报, 2019, 19(1): 108-118. doi: 10.19818/j.cnki.1671-1637.2019.01.011
YANG Jian-zhong, MA Bo-wen, CHEN Xi-yuan, WANG Zhen-bin. Influence of air supply form on contaminat diffusion of bleed air in aircraft cabin[J]. Journal of Traffic and Transportation Engineering, 2019, 19(1): 108-118. doi: 10.19818/j.cnki.1671-1637.2019.01.011
Citation: YANG Jian-zhong, MA Bo-wen, CHEN Xi-yuan, WANG Zhen-bin. Influence of air supply form on contaminat diffusion of bleed air in aircraft cabin[J]. Journal of Traffic and Transportation Engineering, 2019, 19(1): 108-118. doi: 10.19818/j.cnki.1671-1637.2019.01.011

送风形式对飞机座舱引气污染物扩散影响

doi: 10.19818/j.cnki.1671-1637.2019.01.011
基金项目: 

民用飞机专项科研项目 MJ-2014-J-73

中央高校基本科研业务费专项资金项目 3122018D034

详细信息
    作者简介:

    杨建忠(1974-), 男, 宁夏固原人, 中国民航大学副教授, 从事飞机环境控制系统、飞行控制系统研究

  • 中图分类号: V223.2

Influence of air supply form on contaminat diffusion of bleed air in aircraft cabin

More Information
  • 摘要: 采用联合仿真方法实现了飞机环境控制系统对座舱环境的调节, 建立了飞机环境控制系统到座舱环境闭环仿真模型, 研究了考虑再循环风时不同送风形式对引气污染物在座舱内乘客呼吸区域传播的影响; 以B737-200座舱模型为研究对象, 分析了引气污染发生时相同供气量与不同再循环风比例下, 天花板送风、侧壁送风、混合送风下污染物在呼吸区的分布情况。研究结果表明: 在污染物进入座舱阶段, 不同送风形式与再循环风比例下不同位置污染物浓度存在差异, 天花板送风形式下污染物浓度较大; 再循环风比例每增加20%, 混合送风、侧壁送风、天花板送风形式下污染物浓度分别降低约18.9%、20.6%、15.6%, 侧壁送风形式下污染物浓度降低最多; 在污染物排除阶段, 侧壁送风形式相较于混合送风和天花板送风形式下排污效率分别提升约42.6%和38.7%;采用混合送风或天花板送风形式时, 随着再循环风比例的增加, 排污效率显著提升, 再循环风比例每增加20%, 混合送风和天花板送风排污效率分别提高约10.7%和7.7%;侧壁送风形式下随着再循环风比例的增加, 排污效率无明显提升, 在较高再循环风比例仍可保持最好的排污效率, 能够实现污染物排除和节能的双重优化。可见, 飞机座舱引气污染事件发生时在不改变送风量情况下采用侧壁送风形式和高再循环风比例可以使污染物危害降到最低。

     

  • 图  1  座舱简化模型

    Figure  1.  Simplified model of cabin

    图  2  试验座舱

    Figure  2.  Experimental cabin

    图  3  座舱空调系统

    Figure  3.  Air conditioning system of cabin

    图  4  混合送风流场的PIV试验与CFD仿真结果

    Figure  4.  Flow field results of PIV experiment and CFD simulation in mixed air supply

    图  5  侧壁送风流场的PIV试验与CFD仿真结果

    Figure  5.  Flow field results of PIV experiment and CFD simulation in sidewall air supply

    图  6  天花板送风流场的PIV试验与CFD仿真结果

    Figure  6.  Flow field results of PIV experiment and CFD simulation in ceiling air supply

    图  7  CO浓度随时间变化曲线

    Figure  7.  Changing curve of CO concentration with time

    图  8  联合仿真通信协议机制

    Figure  8.  Co-simulation communication protocol principle

    图  9  Fluent为主程序端的闭环控制联合仿真系统

    Figure  9.  Co-simulation system of closed-loop control with Fluent as main program end

    图  10  环境控制系统再循环风

    Figure  10.  Recycled air in environmental control system

    图  11  联合仿真模拟系统

    Figure  11.  Co-simulation simulation system

    图  12  天花板送风流场结构

    Figure  12.  Flow field structure of ceiling air supply

    图  13  侧壁送风流场结构

    Figure  13.  Flow field structure of sidewall air supply

    图  14  混合送风流场结构

    Figure  14.  Flow field structure of mixed air supply

    图  15  CO释放阶段位置A浓度变化曲线

    Figure  15.  Concentration change curves at position A during CO release stage

    图  16  CO释放阶段位置B浓度变化曲线

    Figure  16.  Concentration change curves at position B during CO release stage

    图  17  CO释放阶段位置C浓度变化曲线

    Figure  17.  Concentration change curves at position C during CO release stage

    图  18  不同位置排污效率变化曲线

    Figure  18.  Changing curves of ventilation efficiency at different positions

    表  1  边界条件参数

    Table  1.   Parameters of boundary conditions

    送风方式 供气速度/ (m·s-1) 供气温度/℃
    天花板送风 3.0 25
    侧壁送风 4.0 25
    混合送风 天花板送风 2.5 25
    侧壁送风 1.3 25
    下载: 导出CSV
  • [1] HU Tao, LIU Meng, PANG Li-Ping, et al. Studies on new air purification and air quality control system of airliner cabin[J]. Procedia Engineering, 2011, 17: 343-353. doi: 10.1016/j.proeng.2011.10.039
    [2] SHEHADI M, JONES B, HOSNI M. Bleed air contamination financial related costs on board commercial flights[J]. SAE International Journal of Aerospace, DOI: 10.4271/2015-01-9007.
    [3] KE Peng, SUN Chun-pin, ZHANG Shu-guang. Airworthiness requirements and means of compliance about the bleed air contamination[J]. Procedia Engineering, 2014, 80: 592-601. doi: 10.1016/j.proeng.2014.09.115
    [4] 代炳荣. 飞机座舱动态空气净化系统研究[D]. 南京: 南京航空航天大学, 2013.

    DAI Bing-rong. Research on dynamic air purification system for aircraft cabin[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013. (in Chinese).
    [5] 何乐. 客机机舱环境热舒适研究[D]. 天津: 天津大学, 2010.

    HE Le. Simulation of thermal comfort in the aircraft cabin[D]. Tianjin: Tianjin University, 2010. (in Chinese).
    [6] 胡毅, 吕宝, 李毓峰. JSSG-2007军用飞机引气污染要求浅析[J]. 航空标准化与质量, 2016 (3): 48-51. https://www.cnki.com.cn/Article/CJFDTOTAL-HKBZ201603015.htm

    HU Yi, LYU Bao, LI Yu-feng. JSSG-2007 Brief analysis on air pollution of military aircraft[J]. Aeronautic Standardization and Quality, 2016 (3): 48-51. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKBZ201603015.htm
    [7] LI Y, LEUNG G M, TANG J W, et al. Role of ventilation in airborne transmission of infectious agents in the built environment—a multidisciplinary systematic review[J]. Indoor Air, 2007, 17: 2-18. doi: 10.1111/j.1600-0668.2006.00445.x
    [8] ZHANG Zhao, CHEN Xi, MAZUMDAR S, et al. Experimental and numerical investigation of airflow and contaminant transport in an airliner cabin mockup[J]. Building and Environment, 2009, 44 (1): 85-94. doi: 10.1016/j.buildenv.2008.01.012
    [9] HUANG Yan, SHEN Xiong, LI Jian-min, et al. A method to optimize sampling locations for measuring indoor air distributions[J]. Atmospheric Environment, 2015, 102: 355-365. doi: 10.1016/j.atmosenv.2014.12.017
    [10] CAO Xiao-dong, LIU Jun-jie, PEI Jing-jing, et al. 2D-PIV measurement of aircraft cabin air distribution with a high spatial resolution[J]. Building and Environment, 2014, 82: 9-19. doi: 10.1016/j.buildenv.2014.07.027
    [11] LI Fei, LIU Jun-jie, PEI Jing-jing, et al. Experimental study of gaseous and particulate contaminants distribution in an aircraft cabin[J]. Atmospheric Environment, 2014, 85: 223-233. doi: 10.1016/j.atmosenv.2013.11.049
    [12] WU Chao-fan, AHMED N A. A novel mode of air supply for aircraft cabin ventilation[J]. Building and Environment, 2012, 56: 47-56. doi: 10.1016/j.buildenv.2012.02.025
    [13] FIŠER J, JÍCHA M. Impact of air distribution system on quality of ventilation in small aircraft cabin[J]. Building and Environment, 2013, 69: 171-182. doi: 10.1016/j.buildenv.2013.08.007
    [14] MAZUMDAR S, LONG Zhen-wei, CHEN Qing-yan. A coupled CFD and analytical model to simulate airborne contaminant transmission in cabins[J]. Indoor and Built Environment, 2014, 23 (7): 946-954. doi: 10.1177/1420326X13503957
    [15] YOU Ruo-yu, CHEN Jun, SHI Zhu, et al. Experimental and numerical study of airflow distribution in an aircraft cabin mock-up with a gasper on[J]. Journal of Building Performance Simulation, 2016, 9 (5): 555-566. doi: 10.1080/19401493.2015.1126762
    [16] ZHAO Ying-jie, DAI Bing-rong, YU Qi, et al. Numerical simulation study on air quality in aircraft cabins[J]. Journal of Environmental Sciences, 2017, 56: 52-61. doi: 10.1016/j.jes.2016.03.034
    [17] MELIKOV A, IVANOVA T, STENFANOVA G. Seat headrest-incorporated personalized ventilation: thermal comfort and inhaled air quality[J]. Building and Environment, 2012, 47: 100-108. doi: 10.1016/j.buildenv.2011.07.013
    [18] FANG Zhao-song, LIU Hong, LI Bai-zhan, et al. Experimental investigation of personal air supply nozzle use in aircraft cabins[J]. Applied Ergonomics, 2015, 47: 193-202. doi: 10.1016/j.apergo.2014.09.011
    [19] 陈希远, 王振斌, 马博文, 等. 考虑污染物传播规律的飞机座舱送风方式研究[J]. 航空学报, 2018, 39 (7): 121994-1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201807007.htm

    CHEN Xi-yuan, WANG Zhen-bin, MA Bo-wen, et al. Study on air supply mode of aircraft cabin considering contaminant transmission laws[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39 (7): 121994-1-10. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201807007.htm
    [20] LI Meng-xi, ZHAO Bin, TU Ji-yuan, et al. Study on the carbon dioxide lockup phenomenon in aircraft cabin by computational fluid dynamics[J]. Building Simulation, 2015, 8: 431-441. doi: 10.1007/s12273-015-0217-8
    [21] YOU Ruo-yu, LIU Wei, CHEN Jun, et al. Predicting airflow distribution and contaminant transport in aircraft cabins with a simplified gasper model[J]. Journal of Building Performance Simulation, 2016, 9 (6): 699-708. doi: 10.1080/19401493.2016.1196730
    [22] LI Meng-xi, YAN Yi-huan, ZHAO Bin, et al. Assessment of turbulence models and air supply opening models for CFD modelling of airflow and gaseous contaminant distributions in aircraft cabins[J]. Indoor and Built Environment, 2017, DOI: 10.1177/1420326X16688049.
    [23] 王丽丽, 李舜酩, 于国强, 等. 民机舱室结构建模及基于FEM-BEM的辐射噪声仿真分析[J]. 机械设计与制造工程, 2013, 42 (11): 10-13. https://www.cnki.com.cn/Article/CJFDTOTAL-JXZZ201311003.htm

    WANG Li-li, LI Shun-ming, YU Guo-qiang, et al. The modeling of civil aircraft cabin and numerical simulation of radiation noise based on FEM/BEM[J]. Machine Design and Manufacturing Engineering, 2013, 42 (11): 10-13. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXZZ201311003.htm
    [24] YIN Hai-shen, SHEN Xiong, HUANG Yan, et al. Modeling dynamic responses of aircraft environmental control systems by coupling with cabin thermal environment simulations[J]. Building Simulation, 2016, 9 (4): 459-468. doi: 10.1007/s12273-016-0278-3
    [25] 刘俊杰, 刘素梅, 孙贺江, 等. 大型客机座舱合理排数的数值模拟[J]. 天津大学学报(自然科学与工程技术版), 2013, 46 (1): 8-15. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201301004.htm

    LIU Jun-jie, LIU Su-mei, SUN He-jiang, et al. Numerical simulation of the reasonable row number for commercial aircraft cabins[J]. Journal of Tianjin University (Science and Technology), 2013, 46 (1): 8-15. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201301004.htm
    [26] ZHANG Zhao, ZHANG Wei, ZHAI Zhi-qiang, et al. Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD: part2—comparison with experimental data from literature[J]. Science and Technology for the Built Environment, 2007, 13 (6): 871-886.
    [27] LIU Su-mei, XU Lu-yi, CHAO Jiang-yue, et al. Thermal environment around passengers in an aircraft cabin[J]. Science and Technology for the Built Environment, 2013, 19 (5): 627-634.
    [28] GAO N P, NIU J L. CFD study of the thermal environment around a human body: a review[J]. Indoor and Built Environment, 2005, 14 (1): 5-16. doi: 10.1177/1420326X05050132
    [29] 刘俊杰, 朱学良, 曹晓东, 等. 客舱内自然对流运动对流场影响的实验研究[J]. 天津大学学报(自然科学与工程技术版), 2016, 49 (3): 221-230. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201603002.htm

    LIU Jun-jie, ZHU Xue-liang, CAO Xiao-dong, et al. Experimental research on the influence of natural convection on the flow field in the cabin mockup[J]. Journal of Tianjin University (Science and Technology), 2016, 49 (3): 221-230. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201603002.htm
    [30] LEMOS R D L, VIEIRA R S, ISOLDI L A, et al. Numerical analysis of a turbulent flow with Coanda effect in hydrodynamics profiles[J]. FME Transactions, 2017, 45: 412-420.
    [31] 马仁民. 通风的有效性与室内空气品质[J]. 暖通空调, 2000, 30 (5): 20-23. https://www.cnki.com.cn/Article/CJFDTOTAL-NTKT200005009.htm

    Ma Ren-min. Ventilation effectiveness and IAQ[J]. Heating Ventilating and Air Conditioning, 2000, 30 (5): 20-23. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NTKT200005009.htm
  • 加载中
图(18) / 表(1)
计量
  • 文章访问数:  994
  • HTML全文浏览量:  103
  • PDF下载量:  1152
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-10
  • 刊出日期:  2019-02-25

目录

    /

    返回文章
    返回