留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

桩-土-断层耦合作用下桥梁桩基竖向承载特性

冯忠居 陈慧芸 袁枫斌 尹洪桦 李孝雄 刘闯 张福强 王蒙蒙 李少杰

冯忠居, 陈慧芸, 袁枫斌, 尹洪桦, 李孝雄, 刘闯, 张福强, 王蒙蒙, 李少杰. 桩-土-断层耦合作用下桥梁桩基竖向承载特性[J]. 交通运输工程学报, 2019, 19(2): 36-48. doi: 10.19818/j.cnki.1671-1637.2019.02.004
引用本文: 冯忠居, 陈慧芸, 袁枫斌, 尹洪桦, 李孝雄, 刘闯, 张福强, 王蒙蒙, 李少杰. 桩-土-断层耦合作用下桥梁桩基竖向承载特性[J]. 交通运输工程学报, 2019, 19(2): 36-48. doi: 10.19818/j.cnki.1671-1637.2019.02.004
FENG Zhong-ju, CHEN Hui-yun, YUAN Feng-bin, YIN Hong-hua, LI Xiao-xiong, LIU Chuang, ZHANG Fu-qiang, WANG Meng-meng, LI Shao-jie. Vertical bearing characteristics of bridge pile foundation under pile-soil-fault coupling action[J]. Journal of Traffic and Transportation Engineering, 2019, 19(2): 36-48. doi: 10.19818/j.cnki.1671-1637.2019.02.004
Citation: FENG Zhong-ju, CHEN Hui-yun, YUAN Feng-bin, YIN Hong-hua, LI Xiao-xiong, LIU Chuang, ZHANG Fu-qiang, WANG Meng-meng, LI Shao-jie. Vertical bearing characteristics of bridge pile foundation under pile-soil-fault coupling action[J]. Journal of Traffic and Transportation Engineering, 2019, 19(2): 36-48. doi: 10.19818/j.cnki.1671-1637.2019.02.004

桩-土-断层耦合作用下桥梁桩基竖向承载特性

doi: 10.19818/j.cnki.1671-1637.2019.02.004
基金项目: 

国家自然科学基金项目 51708040

海南省交通科技项目 HNZXY2015-045R

详细信息
    作者简介:

    冯忠居(1965-), 男, 山西万荣人, 长安大学教授, 工学博士, 从事岩土工程研究

    通讯作者:

    陈慧芸(1995-), 女, 山西霍州人, 长安大学工学博士研究生

  • 中图分类号: U443.15

Vertical bearing characteristics of bridge pile foundation under pile-soil-fault coupling action

More Information
  • 摘要: 基于海南铺前大桥, 采用室内模型试验与数值仿真, 分析了断层-桩-岩土相互作用时桥梁桩基的距离效应与承载特性。研究结果表明: 在模型试验中, 对于直径为6.3 cm, 长度为60 cm的桩基, 当断层与桩基水平距离由9.45 cm增加到22.05 cm时, 承载力增幅为26.7%, 当水平距离由22.05 cm增加到31.50 cm时, 承载力增幅仅为3.8%, 断层与桩基水平距离对桩基承载力影响度降至6.5%, 可以忽略; 当桩长一定, 荷载相同时, 断层与桩基水平距离越小, 桩身轴力变化越小; 当断层与桩基水平距离由9.45 cm增加到22.05 cm时, 桩身30 cm处桩侧阻力增大了0.059 kN, 水平距离对桩侧阻力影响度降低了44.5%, 当水平距离由22.05 cm增加到31.50 cm时, 桩侧阻力增大了0.029 kN, 水平距离对桩侧阻力影响度降低了8.3%。在数值仿真中, 在桩基直径为1.5 m, 长度为30 m, 覆盖层厚度为10 m的工况下, 当断层与桩基水平距离由1.5 m增加到6.0 m时, 承载力增幅由11.0%减小到6.5%, 当水平距离由6.0 m增加到7.5 m时, 承载力增幅减小到4.9%;当断层与桩基水平距离由7.5 m减小到1.5 m时, 桩身轴力沿桩长方向减小趋势逐渐变缓, 当桩长一定, 荷载相同时, 断层与桩基水平距离越小, 桩身轴力变化越小; 当断层与桩基水平距离由1.5 m增加到6.0 m时, 桩身16 m处桩侧阻力增大了1.90 MN, 水平距离对桩侧阻力影响度降低了28.0%, 当水平距离由6.0 m增加到7.5 m时, 桩侧阻力增大了0.33 MN, 水平距离对桩侧阻力影响度降低了5.0%。模型试验与数值仿真结果均表明, 在5倍桩径范围内, 桩基竖向承载特性受断层与桩基水平距离的影响较大; 超出5倍桩径后, 水平距离的影响较小, 甚至可以忽略; 断层与桩基水平距离对承载力、桩侧阻力的影响度与桩侧阻力占比的仿真值均减小较快, 在水平距离为5倍桩径时, 较模型试验值分别降低了2.2%、6.0%、0.174, 结果较理想化, 可用作工程参考。

     

  • 图  1  断层与桥位关系

    Figure  1.  Relationship between faults and bridge site

    图  2  模型箱设计

    Figure  2.  Design of model box

    图  3  竖向加载装置

    Figure  3.  Vertical loading device

    图  4  桩顶竖向沉降测试

    Figure  4.  Vertical settlement measurement of pile top

    图  5  应变片布设(单位: cm)

    Figure  5.  Strain gage layout (unit: cm)

    图  6  不同水平距离下的P-S试验曲线

    Figure  6.  P-S test curves under different horizontal distances

    图  7  不同覆盖层厚度比例下的P-S试验曲线

    Figure  7.  P-S test curves under different cover thickness ratios

    图  8  桩基竖向承载力

    Figure  8.  Vertical bearing capacities of pile foundations

    图  9  桩基竖向承载力影响度

    Figure  9.  Influence degrees of vertical bearing capacities of pile foundations

    图  10  桩基竖向承载力增幅试验曲线

    Figure  10.  Test curves of vertical bearing capacity amplification of pile foundation

    图  11  桩身轴力试验曲线

    Figure  11.  Test curves of pile axial force

    图  12  桩侧阻力试验曲线

    Figure  12.  Test curves of pile side resistance

    图  13  土层分布与桩位

    Figure  13.  Soil distribution and pile position

    图  14  数值仿真模型

    Figure  14.  Numerical simulation model

    图  15  不同水平距离下的P-S仿真曲线

    Figure  15.  P-S simulation curves under different horizontal distances

    图  16  桩基竖向承载力仿真曲线

    Figure  16.  Simulation curves of vertical bearing capacity of pile foundation

    图  17  桩基竖向承载力增幅仿真曲线

    Figure  17.  Simulation curves of vertical bearing capacity amplification of pile foundation

    图  18  桩基轴力仿真曲线

    Figure  18.  Simulation curves of pile foundation axial force

    图  19  桩侧阻力仿真曲线

    Figure  19.  Simulation curves of pile foundation side resistance

    图  20  桩基竖向承载力影响度试验曲线

    Figure  20.  Test curves of influence degree of vertical bearing capacity for pile foundation

    图  21  桩基竖向承载力影响度仿真曲线

    Figure  21.  Simulation curves of influence degree of vertical bearing capacity for pile foundation

    图  22  桩侧阻力影响度试验曲线

    Figure  22.  Test curves of influence degree of pile foundation side resistance

    图  23  桩侧阻力影响度仿真曲线

    Figure  23.  Simulation curves of influence degree of pile foundation side resistance

    图  24  Q0/F0W/F0试验曲线

    Figure  24.  Test curves of Q0/F0 and W/F0

    图  25  Q0/F0W/F0仿真曲线

    Figure  25.  Simulation curves of Q0/F0 and W/F0

    表  1  模型土剪切波速

    Table  1.   Shear wave velocities of model soils

    土体 淤泥质黏土 卵石土 微风化花岗岩
    剪切波速/ (m·s-1) 138 539 917
    下载: 导出CSV

    表  2  断层参数

    Table  2.   Fault parameters

    重度/ (kN·m3) 弹性模量/MPa 泊松比
    41 500 0.20 24
    下载: 导出CSV

    表  3  断层与桩基水平距离计算工况

    Table  3.   Calculation conditions of horizontal distance between fault and pile foundation

    分析因素 影响因素
    l L/cm d1/cm h/cm
    1.5d1、2.5d1、3.5d1、5.0d1 40、60、80、100 6.3 30
    下载: 导出CSV

    表  4  数值仿真模型材料参数

    Table  4.   Material parameters in numerical simulation model

    材料 弹性模量/MPa 泊松比 重度/ (kN·m-3) 黏聚力/kPa 摩擦角/ (°)
    钢筋混凝土 41 500.00 0.20 24.0
    淤泥质黏土 45.68 0.42 17.0 20 20.4
    卵石土 99.80 0.28 24.0 200 30.0
    微风化花岗岩 60 058.00 0.20 26.5 1 740 51.0
    断层 29 000.00 0.20 25.0 0 60.0
    下载: 导出CSV

    表  5  数值仿真计算工况

    Table  5.   Calculation conditions in numerical simulation

    工况 分析因素 影响因素
    l/m L/m d2/m h/m
    1 1.5、3.0、4.5、6.0、7.5 30 1.5 10
    2 60 1.8 70
    下载: 导出CSV
  • [1] 刘闯, 冯忠居, 张福强, 等. 地震作用下特大型桥梁嵌岩桩基础动力响应[J]. 交通运输工程学报, 2018, 18 (4): 53-62. doi: 10.3969/j.issn.1671-1637.2018.04.006

    LIU Chuang, FENG Zhong-ju, ZHANG Fu-qiang, et al. Dynamic response of rock-sockted pile foundation for extra-large bridge under earthquake action[J]. Journal of Traffic and Transportation Engineering, 2018, 18 (4): 53-62. (in Chinese). doi: 10.3969/j.issn.1671-1637.2018.04.006
    [2] 林金舜. 沙溪特大桥断层破碎带大直径桩基施工技术[J]. 公路, 2019 (3): 106-110. doi: 10.3969/j.issn.1671-2668.2019.03.025

    LIN Jin-shun. Construction technology of large-diameter pile foundation in fault fracture zone of Shaxi Extra Large Bridge[J]. Highway, 2019 (3): 106-110. (in Chinese). doi: 10.3969/j.issn.1671-2668.2019.03.025
    [3] GOEL R K, CHOPRA A K. Nonlinear analysis of ordinary bridges crossing fault-rupture zones[J]. Journal of Bridge Engineering, 2009, 14 (3): 216-224. doi: 10.1061/(ASCE)1084-0702(2009)14:3(216)
    [4] DI LAORA R, ROVITHIS E. Kinematic bending of fixed-head piles in nonhomogeneous soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141 (4): 04014126-1-10. doi: 10.1061/(ASCE)GT.1943-5606.0001270
    [5] SAIIDI M, VOSOOGHI A, CHOI H, et al. Shake table studies and analysis of a two-span RC bridge model subjected to a fault rupture[J]. Journal of Bridge Engineering, 2014, 19 (8): A4014003-1-9. doi: 10.1061/(ASCE)BE.1943-5592.0000478
    [6] 金保和. 羽状断层不良地质带上的桥梁设计[J]. 桥梁建设, 1996 (4): 24-26. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS604.006.htm

    JIN Bao-he. Design of bridges located in poor geologic zone of pinnate fault[J]. Bridge Construction, 1996 (4): 24-26. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS604.006.htm
    [7] 夏春旭, 柳英洲, 柳春光. 桥梁墩柱在近断层水平多脉冲地震动作用下响应特征分析[J]. 振动与冲击, 2017, 36 (2): 95-100, 110. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201702015.htm

    XIA Chun-xu, LIU Ying-zhou, LIU Chun-guang. Characteristic response analysis of bridge piers under multi-pulse near-fault earthquake excitation[J]. Journal of Vibration and Shock, 2017, 36 (2): 95-100, 110. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201702015.htm
    [8] 帅少军, 戴万江, 罗嗣碧. 跨断裂带桥梁设计研究[J]. 公路, 2016 (4): 127-130. doi: 10.3969/j.issn.1002-0268.2016.04.020

    SHUAI Shao-jun, DAI Wan-jiang, LUO Si-bi. Study on the design of bridges across fault zones[J]. Highway, 2016 (4): 127-130. (in Chinese). doi: 10.3969/j.issn.1002-0268.2016.04.020
    [9] 戴自航, 陈林靖. 多层地基中水平荷载桩计算m法的两种数值解[J]. 岩土工程学报, 2007, 29 (5): 690-696. doi: 10.3321/j.issn:1000-4548.2007.05.010

    DAI Zi-hang, CHEN Lin-jing. Two numerical solutions of laterally loaded piles installed in multi-layered soils by m method[J]. Chinese Journal of Geotechnical Engineering, 2007, 29 (5): 690-696. (in Chinese). doi: 10.3321/j.issn:1000-4548.2007.05.010
    [10] 王年香, 章为民. 特大型桥梁群桩基础承载特性离心模型试验研究[J]. 公路交通科技, 2008, 25 (4): 79-83. doi: 10.3969/j.issn.1002-0268.2008.04.016

    WANG Nian-xiang, ZHANG Wei-min. Centrifuge modeling on bearing behavior of large bridge group pile foundation[J]. Journal of Highway and Transportation Research and Development, 2008, 25 (4): 79-83. (in Chinese). doi: 10.3969/j.issn.1002-0268.2008.04.016
    [11] 赵明华, 罗卫华, 雷勇, 等. 汨水河特大桥嵌岩桩承载特性试验研究[J]. 湖南大学学报(自然科学版), 2014, 41 (3): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201403001.htm

    ZHAO Ming-hua, LUO Wei-hua, LEI Yong, et al. In-site load-carrying characteristics test of rock-socked piles of Mishui River Bridge[J]. Journal of Hunan University (Natural Sciences), 2014, 41 (3): 1-6. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201403001.htm
    [12] 曾波. 断层破碎带大直径深桩基础的施工[J]. 中外公路, 2002, 22 (5): 80-81. doi: 10.3969/j.issn.1671-2579.2002.05.027

    ZENG Bo. Construction of large diameter and deep pile foundation in fault fracture zone[J]. Journal of China and Foreign Highway, 2002, 22 (5): 80-81. (in Chinese). doi: 10.3969/j.issn.1671-2579.2002.05.027
    [13] 冯忠居, 王富春, 苏航州, 等. 黄土洞穴对桥梁桩基竖向承载特性影响的离心模型试验[J]. 长安大学学报(自然科学版), 2017, 37 (2): 35-44. doi: 10.3969/j.issn.1671-8879.2017.02.005

    FENG Zhong-ju, WANG Fu-chun, SU Hang-zhou, et al. Centrifuge model test on effect of underground loess cave on vertical bearing characteristic of bridge pile foundation[J]. Journal of Chang'an University (Natural Science Edition), 2017, 37 (2): 35-44. (in Chinese). doi: 10.3969/j.issn.1671-8879.2017.02.005
    [14] 冯忠居, 王富春, 张其浪, 等. 钢管混凝土复合桩横轴向承载特性离心模型试验研究[J]. 土木工程学报, 2018, 51 (1): 114-123, 128. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201801014.htm

    FENG Zhong-ju, WANG Fu-chun, ZHANG Qi-lang, et al. Centrifuge model tests of horizontal bearing characteristics of steel pipe concrete composite pile[J]. China Civil Engineering Journal, 2018, 51 (1): 114-123, 128. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201801014.htm
    [15] 曹树刚, 洛锋, 程崇胜, 等. 富水断层破碎带井筒围岩控制[J]. 岩石力学与工程学报, 2014, 33 (8): 1536-1545. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201408004.htm

    CAO Shu-gang, LUO Feng, CHENG Chong-sheng, et al. Surrounding rock control of shaft in water enriched fault fracture zone[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33 (8): 1536-1545. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201408004.htm
    [16] 郭为国. 断层破碎带深桩基的处理[J]. 公路, 1998 (8): 6-12. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL199808001.htm

    GUO Wei-guo. Treatment of deep pile foundation in fault fracture zone[J]. Highway, 1998 (8): 6-12. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL199808001.htm
    [17] 苏航州. 黄土暗穴对公路桥梁桩基础承载特性影响的离心模型试验研究[D]. 西安: 长安大学, 2016.

    SU Hang-zhou. The study of centrifugal modeling test on load-bearing characteristics affected by loess hidden caves of highway bridges pile foundation[D]. Xi'an: Chang'an University, 2016. (in Chinese).
    [18] 劳伟康, 周立运, 王钊. 大直径柔性钢管嵌岩桩水平承载力试验与理论分析[J]. 岩石力学与工程学报, 2004, 23 (10): 1770-1777. doi: 10.3321/j.issn:1000-6915.2004.10.033

    LAO Wei-kang, ZHOU Li-yun, WANG Zhao. Field test and theoretical analysis on flexible large-diameter rock-socketed steel pipe piles under lateral load[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23 (10): 1770-1777. (in Chinese). doi: 10.3321/j.issn:1000-6915.2004.10.033
    [19] 李晋, 冯忠居, 谢永利. 大直径空心桩承载性状的数值仿真[J]. 长安大学学报(自然科学版), 2004, 24 (4): 36-39. doi: 10.3321/j.issn:1671-8879.2004.04.009

    LI Jin, FENG Zhong-ju, XIE Yong-li. Numerical simulation of large diameter hollow pile bearing performance[J]. Journal of Chang'an University (Natural Science Edition), 2004, 24 (4): 36-39. (in Chinese). doi: 10.3321/j.issn:1671-8879.2004.04.009
    [20] 李勇, 闫维明, 刘晶波, 等. 桥梁结构缩尺模型模拟地震振动台试验研究进展[J]. 工程抗震与加固改造, 2013, 35 (5): 1-10. doi: 10.3969/j.issn.1002-8412.2013.05.001

    LI Yong, YAN Wei-ming, LIU Jing-bo, et al. Study and development on shake table tests of scaled models of bridge engineering[J]. Earthquake Resistant Engineering and Retrofitting, 2013, 35 (5): 1-10. (in Chinese). doi: 10.3969/j.issn.1002-8412.2013.05.001
    [21] 史文清, 王建华, 陈锦剑. 考虑桩土接触面特性的水平受荷单桩数值分析[J]. 上海交通大学学报, 2006, 40 (8): 1457-1460. doi: 10.3321/j.issn:1006-2467.2006.08.043

    SHI Wen-qing, WANG Jian-hua, CHEN Jin-jian. Numerical analysis of the laterally loaded pile considering the unlinear characteristic of pile soil interface[J]. Journal of Shanghai Jiaotong University, 2006, 40 (8): 1457-1460. (in Chinese). doi: 10.3321/j.issn:1006-2467.2006.08.043
    [22] 袁林娟, 刘小生, 汪小刚, 等. 振动台土-箱结构模型动力特性及反应的解析分析[J]. 岩土工程学报, 2012, 34 (6): 1038-1042. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201206013.htm

    YUAN Lin-juan, LIU Xiao-sheng, WANG Xiao-gang, et al. Analytic solution of dynamic characteristics and responses of soil-box model for shaking table tests[J]. Chinese Journal of Geotechnical Engineering, 2012, 34 (6): 1038-1042. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201206013.htm
    [23] 董芸秀, 冯忠居, 郝宇萌, 等. 岩溶区桥梁桩基承载力试验与合理嵌岩深度[J]. 交通运输工程学报, 2018, 18 (6): 27-36. doi: 10.3969/j.issn.1671-1637.2018.06.004

    DONG Yun-xiu, FENG Zhong-ju, HAO Yu-meng, et al. Experiment on bearing capacity of bridge pile foundations in karst area sand reasonable rock-socketed depth[J]. Journal of Traffic and Transportation Engineering, 2018, 18 (6): 27-36. (in Chinese). doi: 10.3969/j.issn.1671-1637.2018.06.004
    [24] 刘恺德, 刘泉声, 刘滨, 等. 地质异常带巷道稳定控制对策及效果研究[J]. 岩石力学与工程学报, 2011, 30 (12): 2486-2497. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201112014.htm

    LIU Kai-de, LIU Quan-sheng, LIU Bin, et al. Research on control measures and effects for roadway stability in geological anomaly zone[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30 (12): 2486-2497. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201112014.htm
    [25] 陈思晓, 冯忠居, 何静斌. 海洋环境基桩海水泥浆工程特性试验研究[J]. 桥梁建设, 2018, 48 (6): 70-74. doi: 10.3969/j.issn.1003-4722.2018.06.013

    CHEN Si-xiao, FENG Zhong-ju, HE Jing-bin. Experimental study on engineering characteristics of seawater mortar for bored piles in marine environment[J]. Bridge Construction, 2018, 48 (6): 70-74. (in Chinese). doi: 10.3969/j.issn.1003-4722.2018.06.013
    [26] 胡盛, 杨华振, 罗嗣碧, 等. 海南铺前大桥总体设计[J]. 桥梁建设, 2016, 46 (1): 94-99. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201601022.htm

    HU Sheng, YANG Hua-zhen, LUO Si-bi, et al. Overall design of Puqian Bridge in Hainan[J]. Bridge Construction, 2016, 46 (1): 94-99. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201601022.htm
    [27] 高广运, 宋健. 近断层速度脉冲地震动引起的边坡永久位移预测模型[J]. 岩土力学, 2014, 35 (5): 1340-1347. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405020.htm

    GAO Guang-yun, SONG Jian. Predictive models for permanent displacement of slopes induced by near-fault pulse-like ground motions[J]. Rock and Soil Mechanics, 2014, 35 (5): 1340-1347. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405020.htm
    [28] 惠迎新, 毛明杰, 刘海峰, 等. 跨断层桥梁结构地震响应影响[J]. 吉林大学学报(工学版), 2018, 48 (6): 1725-1734. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201806012.htm

    HUI Ying-xin, MAO Ming-jie, LIU Hai-feng, et al. Influence of structural seismic response of bridges crossing active fault[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48 (6): 1725-1734. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201806012.htm
  • 加载中
图(25) / 表(5)
计量
  • 文章访问数:  806
  • HTML全文浏览量:  137
  • PDF下载量:  395
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-11
  • 刊出日期:  2019-04-25

目录

    /

    返回文章
    返回