-
摘要: 为了解决聚合物改性沥青储存稳定性差、易离析、易老化等问题, 利用聚氨酯(PU) 对沥青进行化学改性; 制备了PU改性沥青, 采用傅里叶变换红外光谱(FTIR)、动态热机械分析(DMA) 和差示扫描量热法(DSC) 试验研究了PU改性沥青的改性机理, 采用Brookfield旋转黏度试验、动态剪切流变(DSR) 试验、低温弯曲梁流变(BBR) 试验、旋转薄膜烘箱加热试验(RTFOT) 和紫外老化试验等评价了PU改性沥青、SBS改性沥青和70#基质沥青的性能。研究结果表明: 圆盘锯齿式搅拌器可以很好地暴露沥青中的活性基团, 使PU达到较好的改性效果; PU改性沥青中主要存在2种反应, 一是异氰酸酯与多元醇之间反应生成氨基甲酸酯, 二是异氰酸酯与沥青质中的芳香族化合物之间发生加成反应; PU改性沥青的高温布氏黏度高于同温度下的SBS改性沥青, 且64℃时的抗车辙因子是SBS改性沥青的6倍左右, 说明其高温性能非常优异; PU改性沥青RTFOT前后针入度比达到了85%, 软化点变化幅度为0.5℃, 说明其抗热氧老化性能非常优异; 在紫外老化试验中, PU改性沥青软化点和针入度变化范围分别为1℃~4℃和0.1~0.3 mm, 说明其抗紫外老化性能非常优异。Abstract: To solve the problems such as poor storage stability, easy segregation and aging for polymer modified asphalt, the polyurethane (PU) was used to chemically modify the asphalt. The PU modified asphalt was prepared. The Fourier transform infrared spectroscopy (FTIR) test, dynamic thermomechanical analysis (DMA) test and differential scanning calorimetry (DSC) test were conducted to analyze the modification mechanism of PU modified asphalt. The performances of PU modified asphalt, SBS modified asphalt and 70# base asphalt were evaluated by the Brookfield rotary viscosity test, dynamic shear rheological (DSR) test, low-temperature bending beam rheological (BBR) test, rotating thin film oven test (RTFOT), and ultraviolet aging test. Research result shows that the disk sawtooth agitator can expose the active group well in the asphalt, and make the PU achieve better modification effect. There are mainly two reactions in the PU modified asphalt. One is the reaction between the isocyanate and polyol to form carbamate, the other is the addition reaction between the isocyanate and aromatic compounds in the asphalt. The high-temperature Brookfield viscosity of PU modified asphalt is higher than that of SBS modified asphalt at the same temperature. The rutting factor of PU modified asphalt at 64 ℃ is about 6 times of that of SBS modified asphalt, showing that its high-temperature performance is excellent. The penetration ratio of PU modified asphalt before to after RTFOT reaches 85%. The softening point change scope of PU modified asphalt is 0.5 ℃, showing that its thermal oxygen aging resistance is excellent. In the ultraviolet aging test, the change scopes of softening point and penetration of PU modified asphalt are 1 ℃-4 ℃ and 0.1-0.3 mm, respectively, indicating that its ultraviolet aging resistance is excellent.
-
表 1 基质沥青基本性能
Table 1. Basic properties of base asphalt
参数 25 ℃针入度/0.1 mm 15 ℃延度/cm 软化点/℃ 密度/ (g·cm-3) 参数值 71 > 100 48.2 1.025 表 2 不同制备设备下PU改性沥青试验结果
Table 2. Test results of PU modified asphalt with different preparation equipments
共混设备 转速/ (r·min-1) 软化点/℃ 25 ℃针入度/0.1 mm 圆盘锯齿式搅拌器 1 400 75.0 23 螺旋桨叶轮搅拌器 300 52.5 61 高速剪切机 5 000 54.5 57 表 3 三种改性沥青技术指标
Table 3. Technical indexes of three modified asphalts
沥青类型 25 ℃针入度/0.1 mm 软化点/℃ 双龙PU改性沥青 20 75 加德士PU改性沥青 18 73 齐鲁PU改性沥青 21 74 表 4 PU改性沥青与SBS改性沥青的性能指标
Table 4. Performance indexes of PU modified asphalt and SBS modified asphalt
检测项目 PU改性沥青 SBS改性沥青 25 ℃针入度/0.1 mm 20 54 5 ℃延度/cm 脆断 15 软化点/℃ 75 78 针入度指数 -1.453 1.091 60 ℃动力黏度/ (Pa·s) 14 875 2 890 135 ℃布氏黏度/ (Pa·s) 3.40 1.44 离析/℃ 0.5 2.0 溶解度/% 99.93 99.82 闪点/℃ 331 346 表 5 PU改性沥青混合料施工温度
Table 5. Construction temperatures of PU modified asphalt mixture
℃ 级配类型 集料 沥青 拌和温度 压实温度 AC-13 180~185 170~175 180~185 160~170 SMA-13 185~190 175~180 185~190 165~175 表 6 沥青RTFOT前后试验结果
Table 6. Test results of asphalts before and after RTFOT
检测指标 基质沥青 SBS改性沥青 PU改性沥青 RTFOT前 RTFOT后 RTFOT前 RTFOT后 RTFOT前 RTFOT后 25 ℃针入度/0.1 mm 70 42 54 48 20 23 软化点/℃ 47.5 53.5 78.0 71.5 75.0 75.5 复数模量/kPa 2.25 3.70 5.70 8.50 25.00 29.00 破坏温度/℃ 65.91 69.43 77.40 80.03 85.71 86.87 表 7 紫外老化前后沥青软化点和针入度
Table 7. Softening points and penetrations of asphalts before and after ultraviolet aging
紫外老化天数/d PU改性沥青 SBS改性沥青 软化点/℃ 25 ℃针入度/0.1 mm 软化点/℃ 25 ℃针入度/0.1 mm 0 75.0 20.0 78.0 54.0 2 74.5 17.0 78.0 52.5 5 73.0 17.0 77.0 53.0 10 73.5 17.0 77.0 50.0 15 71.0 18.0 76.0 52.5 20 72.5 17.0 76.0 50.0 -
[1] FU Zhen, SHEN Wan-qing, HUANG Yue, et al. Laboratory evaluation of pavement performance using modified asphalt mixture with a new composite reinforcing material[J]. International Journal of Pavement Research and Technology, 2017, 10 (6): 507-516. doi: 10.1016/j.ijprt.2017.04.001 [2] BAZMARA B, TAHERSIMA M, BEHRAVAN A, et al. Influence of thermoplastic polyurethane and synthesized polyurethane additive in performance of asphalt pavements[J]. Construction and Building Materials, 2018, 166: 1-11. doi: 10.1016/j.conbuildmat.2018.01.093 [3] 王朝辉, 李彦伟, 李蕊, 等. 低碳多功能电气石改性沥青制备及性能研究[J]. 中国公路学报, 2013, 26 (5): 34-41. doi: 10.3969/j.issn.1001-7372.2013.05.006WANG Chao-hui, LI Yan-wei, LI Rui, et al. Preparation of low-carbon multi-function tourmaline modified asphalt and its performance evaluation[J]. China Journal of Highway and Transport, 2013, 26 (5): 34-41. (in Chinese). doi: 10.3969/j.issn.1001-7372.2013.05.006 [4] ZHU Tan-yong, MA Tao, HUANG Xiao-ming, et al. Evaluating the rutting resistance of asphalt mixtures using a simplified tri-axial repeated load test[J]. Construction and Building Materials, 2016, 116: 72-78. doi: 10.1016/j.conbuildmat.2016.04.102 [5] 季节, 陈磊, 索智, 等. 高温和重载对DCLR改性沥青混合料抗变形能力的影响[J]. 交通运输工程学报, 2019, 19 (1): 1-8. doi: 10.3969/j.issn.1671-1637.2019.01.001JI Jie, CHEN Lei, SUO Zhi, et al. Effect of high temperature and heavy load on deformation resistance of DCLR modified asphalt mixture[J]. Journal of Traffic and Transportation Engineering, 2019, 19 (1): 1-8. (in Chinese). doi: 10.3969/j.issn.1671-1637.2019.01.001 [6] 张海涛, 宫明阳, 杨斌, 等. 不同复合改性沥青混合料路用性能的对比研究[J]. 公路交通科技, 2019, 36 (2): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201902001.htmZHANG Hai-tao, GONG Ming-yang, YANG Bin, et al. Comparative study on road performance of different composite modified asphalt mixtures[J]. Journal of Highway and Transportation Research and Development, 2019, 36 (2): 1-6. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201902001.htm [7] 李超, 王岚. 复合多聚磷酸改性沥青混合料疲劳性能[J]. 复合材料学报, 2018, 35 (8): 2150-2157. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201808020.htmLI Chao, WANG Lan. Fatigue properties of compound polyphosphoric acid modified asphalt mixture[J]. Acta Materiae Compositae Sinica, 2018, 35 (8): 2150-2157. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201808020.htm [8] 郝培文, 常睿, 刘红瑛, 等. 反应性弹性体三元共聚物改性沥青及其混合料性能与基质[J]. 复合材料学报, 2018, 35 (7): 1952-1962. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201807034.htmHAO Pei-wen, CHANG Rui, LIU Hong-ying, et al. Mechanism and performance of reactive elastomeric terpolymer modified asphalt and asphalt mixture[J]. Acta Materiae Compositae Sinica, 2018, 35 (7): 1952-1962. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201807034.htm [9] ZHANG Gao-wang, ZHANG Hong-liang, BU Xin-de, et al. Laboratory study on performances of bimaleimide/unsaturated polyester resin modified asphalt[J]. Construction and Building Materials, 2018, 179: 576-586. doi: 10.1016/j.conbuildmat.2018.05.210 [10] 刘斌清, 仵江涛, 陈华鑫, 等. 多聚磷酸改性沥青的路用性能及机理分析[J]. 深圳大学学报(理工版), 2018, 35 (3): 292-298. https://www.cnki.com.cn/Article/CJFDTOTAL-SZDL201803008.htmLIU Bin-qing, WU Jiang-tao, CHEN Hua-xin, et al. Road performance and mechanism analysis of polyphosphoric acid modified asphalt[J]. Journal of Shenzhen University (Science and Engineering), 2018, 35 (3): 292-298. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SZDL201803008.htm [11] ZHANG Hong-liang, ZHANG Gao-wang, HAN Fei-fei, et al. A lab study to develop a bridge deck pavement using bisphenol a unsaturated polyester resin modified asphalt mixture[J]. Construction and Building Materials, 2018, 159: 83-98. doi: 10.1016/j.conbuildmat.2017.10.126 [12] 谢鸿峰, 戴杰, 刘承果, 等. 环氧沥青的热分析[J]. 高分子材料科学与工程, 2009, 25 (11): 115-117. doi: 10.3321/j.issn:1000-7555.2009.11.032XIE Hong-feng, DAI Jie, LIU Cheng-guo, et al. Thermal analysis of epoxy asphalt[J]. Polymer Materials Science and Engineering, 2009, 25 (11): 115-117. (in Chinese). doi: 10.3321/j.issn:1000-7555.2009.11.032 [13] CHEN Jun, YIN Xiao-jing, WANG Hao, et al. Evaluation of durability and functional performance of porous polyurethane mixture in porous pavement[J]. Journal of Cleaner Production, 2018, 188: 12-19. doi: 10.1016/j.jclepro.2018.03.297 [14] 邵洪涛, 汪国平. 聚氨酯碎石透水路面的结构设计与配方调节[J]. 化工新型材料, 2015, 43 (6): 247-250. https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC201506085.htmSHAO Hong-tao, WANG Guo-ping. Structure design and material adjusting of polyurethane previous pavement[J]. New Chemical Mateials, 2015, 43 (6): 247-250. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC201506085.htm [15] 王火明, 李汝凯, 王秀, 等. 多孔隙聚氨酯碎石混合料强度及路用性能[J]. 中国公路学报, 2014, 27 (10): 24-30. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201410006.htmWANG Huo-ming, LI Ru-kai, WANG Xiu, et al. Strength and road performance for porous polyurethane mixture[J]. China Journal of Highway and Transport, 2014, 27 (10): 24-30. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201410006.htm [16] CONG Lin, WANG Tong-jing, TAN Le, et al. Laboratory evaluation on performance of porous polyurethane mixtures and OGFC[J]. Construction and Building Materials, 2018, 169: 436-442. doi: 10.1016/j.conbuildmat.2018.02.145 [17] CHEN Jun, MA Xie, WANG Hao, et al. Experimental study on anti-icing and deicing performance of polyurethane concrete as road surface layer[J]. Construction and Building Materials, 2018, 161: 598-605. doi: 10.1016/j.conbuildmat.2017.11.170 [18] XIA Lei, CAO Dong-wei, ZHANG Hai-yan, et al. Study on the classical and rheological properties of castor oil-polyurethane pre polymer (C-PU) modified asphalt[J]. Construction and Building Materials, 2016, 112: 949-955. doi: 10.1016/j.conbuildmat.2016.02.207 [19] 刘颖, 辛星. 道路用聚氨酯改性沥青的制备工艺研究[J]. 中外公路, 2015, 35 (5): 255-259. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201505061.htmLIU Ying, XIN Xing. Study on preparation technology of road polyurethane modified asphalt[J]. Journal of China and Foreign Highway, 2015, 35 (5): 255-259. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201505061.htm [20] 刘颖, 辛星. 道路用聚氨酯改性沥青的性能研究[J]. 石油沥青, 2015, 29 (1): 48-53. doi: 10.3969/j.issn.1006-7450.2015.01.010LIU Ying, XIN Xing. Study on performance of polyurethane modified asphalt for pavement[J]. Petroleum Asphalt, 2015, 29 (1): 48-53. (in Chinese). doi: 10.3969/j.issn.1006-7450.2015.01.010 [21] SUN Min, ZHENG Mu-lian, QU Guang-zhen, et al. Performance of polyurethane modified asphalt and its mixtures[J]. Construction and Building Materials, 2018, 191: 386-397. doi: 10.1016/j.conbuildmat.2018.10.025 [22] 景欣, 王军威, 赵雨花, 等. 基于不同软段的聚氨酯弹性体耐热性能研究[J]. 聚氨酯工业, 2019, 34 (1): 16-19. doi: 10.3969/j.issn.1005-1902.2019.01.005JING Xin, WANG Jun-wei, ZHAO Yu-hua, et al. Study on the heat resistance of polyurethane elastomer based on different soft segments[J]. Polyurethane Industry, 2019, 34 (1): 16-19. (in Chinese). doi: 10.3969/j.issn.1005-1902.2019.01.005 [23] 张昌辉, 刘筱, 张星, 等. 国内改性水性聚氨酯胶粘剂研究进展[J]. 中国胶粘剂, 2019, 28 (2): 51-56, 60. https://www.cnki.com.cn/Article/CJFDTOTAL-GXLJ201902014.htmZHANG Chang-hui, LIU Xiao, ZHANG Xing, et al. Development of domestic modified waterborne polyurethane adhesive[J]. China Adhesives, 2019, 28 (2): 51-56, 60. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXLJ201902014.htm [24] 王治流, 刘全伟, 杨琥, 等. 红外光谱法对环氧沥青固化机理的研究[J]. 高分子材料科学与工程, 2005, 21 (3): 93-95. doi: 10.3321/j.issn:1000-7555.2005.03.022WANG Zhi-liu, LIU Quan-wei, YANG Hu, et al. The study on the curing reaction mechanism of epoxy asphalt by FTIR[J]. Polymer Materials Science and Engineering, 2005, 21 (3): 93-95. (in Chinese). doi: 10.3321/j.issn:1000-7555.2005.03.022 [25] 曹雪娟, 唐伯明. 热分析动力学研究环氧沥青混凝土的固化条件[J]. 公路交通科技, 2008, 25 (7): 17-20. doi: 10.3969/j.issn.1002-0268.2008.07.004CAO Xue-juan, TANG Bo-ming. Study on cure reaction condition of epoxy asphalt concrete by thermal analysis kinetics[J]. Journal of Highway and Transportation Research and Development, 2008, 25 (7): 17-20. (in Chinese). doi: 10.3969/j.issn.1002-0268.2008.07.004 [26] 张倩, 范哲哲, 张尚龙, 等. 沥青混合料相位角预估模型[J]. 长安大学学报(自然科学版), 2018, 38 (2): 19-25. doi: 10.3969/j.issn.1671-8879.2018.02.003ZHANG Qian, FAN Zhe-zhe, ZHANG Shang-long, et al. Prediction model of phase angle of asphalt mixture[J]. Journal of Chang'an University (Natural Science Edition), 2018, 38 (2): 19-25. (in Chinese). doi: 10.3969/j.issn.1671-8879.2018.02.003 [27] 陈华鑫, 陈拴发, 王秉纲. SBS改性沥青低温粘度的动态剪切流变测试方法[J]. 同济大学学报(自然科学版), 2009, 37 (4): 505-509. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200904020.htmCHEN Hua-xin, CHEN Shuan-fa, WANG Bing-gang. Low-temperature viscosity determination of SBS modified asphalt with dynamic shear rheometer method[J]. Journal of Tongji University (Natural Science), 2009, 37 (4): 505-509. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200904020.htm [28] ZHANG Dong-mei, ZHANG Heng-long, SHI Cai-jun. Investigation of aging performance of SBS modified asphalt with various aging methods[J]. Construction and Building Materials, 2017, 145: 445-451. doi: 10.1016/j.conbuildmat.2017.04.055 [29] CHEN Mei-zhu, LENG Bin-bin, WU Shao-peng, et al. Physical, chemical and rheological properties of waste edible vegetable oil rejuvenated asphalt binders[J]. Construction and Building Materials, 2014, 66: 286-298. doi: 10.1016/j.conbuildmat.2014.05.033 [30] 石越峰, 季节, 索智, 等. 基于DSR和BBR试验的TLA改性沥青胶浆高低温性能研究[J]. 公路工程, 2016, 41 (5): 72-76. doi: 10.3969/j.issn.1674-0610.2016.05.015SHI Yue-feng, JI Jie, SUO Zhi, et al. Study on the high-and-low-temperature properties of TLA modified asphalt mortar based on DSR and BBR[J]. Highway Engineering, 2016, 41 (5): 72-76. (in Chinese). doi: 10.3969/j.issn.1674-0610.2016.05.015 [31] 曹东伟, 卢杰, 张海燕, 等. 全透式沥青路面专用高黏度改性沥青性能对比[J]. 长安大学学报(自然科学版), 2019, 39 (1): 17-24. doi: 10.3969/j.issn.1671-8879.2019.01.004CAO Dong-wei, LU Jie, ZHANG Hai-yan, et al. Contrastive on performance of fully permeable asphalt pavement dedicated high-viscosity modified asphalt[J]. Journal of Chang'an University (Natural Science Edition), 2019, 39 (1): 17-24. (in Chinese). doi: 10.3969/j.issn.1671-8879.2019.01.004 [32] 姚辉. 微纳米材料改性沥青结合料与混合料性能研究[D]. 长沙: 中南大学, 2012.YAO Hui. Performance research of micro- and nano-modified asphalt binders and mixtures[D]. Changsha: Central South University, 2012. (in Chinese). [33] 董雨明. 硬质沥青及其混合料流变特性与低温性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.DONG Yu-ming. Research on rheological property and low temperature performance of hard grade bitumen and its mixture[D]. Harbin: Harbin Institute of Technology, 2013. (in Chinese).