留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚氨酯改性沥青改性机理和性能

孙敏 郑木莲 毕玉峰 朱琳琳 高源

孙敏, 郑木莲, 毕玉峰, 朱琳琳, 高源. 聚氨酯改性沥青改性机理和性能[J]. 交通运输工程学报, 2019, 19(2): 49-58. doi: 10.19818/j.cnki.1671-1637.2019.02.005
引用本文: 孙敏, 郑木莲, 毕玉峰, 朱琳琳, 高源. 聚氨酯改性沥青改性机理和性能[J]. 交通运输工程学报, 2019, 19(2): 49-58. doi: 10.19818/j.cnki.1671-1637.2019.02.005
SUN Min, ZHENG Mu-lian, BI Yu-feng, ZHU Lin-lin, GAO Yuan. Modification mechanism and performance of polyurethane modified asphalt[J]. Journal of Traffic and Transportation Engineering, 2019, 19(2): 49-58. doi: 10.19818/j.cnki.1671-1637.2019.02.005
Citation: SUN Min, ZHENG Mu-lian, BI Yu-feng, ZHU Lin-lin, GAO Yuan. Modification mechanism and performance of polyurethane modified asphalt[J]. Journal of Traffic and Transportation Engineering, 2019, 19(2): 49-58. doi: 10.19818/j.cnki.1671-1637.2019.02.005

聚氨酯改性沥青改性机理和性能

doi: 10.19818/j.cnki.1671-1637.2019.02.005
基金项目: 

山东交通科技项目 鲁交科技[2017]28

陕西省西咸新区管委会项目 201744

平顶山市科技项目 2018610002000604

中央高校基本科研业务费专项资金项目 310821163502

详细信息
    作者简介:

    孙敏(1985-), 女, 山东台儿庄人, 山东公路技师学院讲师, 长安大学工学博士研究生, 从事道路材料研究

    郑木莲(1977-), 女, 山东蒙阴人, 长安大学教授, 工学博士

  • 中图分类号: U414

Modification mechanism and performance of polyurethane modified asphalt

More Information
  • 摘要: 为了解决聚合物改性沥青储存稳定性差、易离析、易老化等问题, 利用聚氨酯(PU) 对沥青进行化学改性; 制备了PU改性沥青, 采用傅里叶变换红外光谱(FTIR)、动态热机械分析(DMA) 和差示扫描量热法(DSC) 试验研究了PU改性沥青的改性机理, 采用Brookfield旋转黏度试验、动态剪切流变(DSR) 试验、低温弯曲梁流变(BBR) 试验、旋转薄膜烘箱加热试验(RTFOT) 和紫外老化试验等评价了PU改性沥青、SBS改性沥青和70#基质沥青的性能。研究结果表明: 圆盘锯齿式搅拌器可以很好地暴露沥青中的活性基团, 使PU达到较好的改性效果; PU改性沥青中主要存在2种反应, 一是异氰酸酯与多元醇之间反应生成氨基甲酸酯, 二是异氰酸酯与沥青质中的芳香族化合物之间发生加成反应; PU改性沥青的高温布氏黏度高于同温度下的SBS改性沥青, 且64℃时的抗车辙因子是SBS改性沥青的6倍左右, 说明其高温性能非常优异; PU改性沥青RTFOT前后针入度比达到了85%, 软化点变化幅度为0.5℃, 说明其抗热氧老化性能非常优异; 在紫外老化试验中, PU改性沥青软化点和针入度变化范围分别为1℃~4℃和0.1~0.3 mm, 说明其抗紫外老化性能非常优异。

     

  • 图  1  PU结构

    Figure  1.  Structure of PU

    图  2  圆盘锯齿式搅拌器

    Figure  2.  Disk sawtooth agitator

    图  3  PU改性沥青制备装置

    Figure  3.  Preparation plant of PU modified asphalt'

    图  4  PU预聚体FTIR结果

    Figure  4.  FTIR result of PU prepolymer

    图  5  三种沥青的FTIR曲线

    Figure  5.  FTIR curves of three asphalts

    图  6  PU预聚体DMA曲线

    Figure  6.  DMA curves of PU prepolymer

    图  7  基质沥青和PU改性沥青DMA曲线

    Figure  7.  DMA curves of base asphalt and PU modified asphalt

    图  8  放大后的PU改性沥青

    Figure  8.  Enlarged PU modified asphalt

    图  9  不同沥青的DSC曲线

    Figure  9.  DSC curves of different asphalts

    图  10  PU改性沥青、SBS改性沥青和基质沥青的黏温曲线

    Figure  10.  Viscosity-temperature curves of PU modified asphalt, SBS modified asphalt and base asphalt

    图  11  三种沥青的DSR试验结果

    Figure  11.  DSR test result of three asphalts

    图  12  三种沥青的BBR试验结果

    Figure  12.  BBR test result of three asphalts

    图  13  紫外老化10 d后SBS改性沥青

    Figure  13.  SBS modified asphalt after 10 d ultraviolet aging

    图  14  紫外老化15 d后PU改性沥青

    Figure  14.  PU modified asphalt after 15 d ultraviolet aging

    表  1  基质沥青基本性能

    Table  1.   Basic properties of base asphalt

    参数 25 ℃针入度/0.1 mm 15 ℃延度/cm 软化点/℃ 密度/ (g·cm-3)
    参数值 71 > 100 48.2 1.025
    下载: 导出CSV

    表  2  不同制备设备下PU改性沥青试验结果

    Table  2.   Test results of PU modified asphalt with different preparation equipments

    共混设备 转速/ (r·min-1) 软化点/℃ 25 ℃针入度/0.1 mm
    圆盘锯齿式搅拌器 1 400 75.0 23
    螺旋桨叶轮搅拌器 300 52.5 61
    高速剪切机 5 000 54.5 57
    下载: 导出CSV

    表  3  三种改性沥青技术指标

    Table  3.   Technical indexes of three modified asphalts

    沥青类型 25 ℃针入度/0.1 mm 软化点/℃
    双龙PU改性沥青 20 75
    加德士PU改性沥青 18 73
    齐鲁PU改性沥青 21 74
    下载: 导出CSV

    表  4  PU改性沥青与SBS改性沥青的性能指标

    Table  4.   Performance indexes of PU modified asphalt and SBS modified asphalt

    检测项目 PU改性沥青 SBS改性沥青
    25 ℃针入度/0.1 mm 20 54
    5 ℃延度/cm 脆断 15
    软化点/℃ 75 78
    针入度指数 -1.453 1.091
    60 ℃动力黏度/ (Pa·s) 14 875 2 890
    135 ℃布氏黏度/ (Pa·s) 3.40 1.44
    离析/℃ 0.5 2.0
    溶解度/% 99.93 99.82
    闪点/℃ 331 346
    下载: 导出CSV

    表  5  PU改性沥青混合料施工温度

    Table  5.   Construction temperatures of PU modified asphalt mixture  

    级配类型 集料 沥青 拌和温度 压实温度
    AC-13 180~185 170~175 180~185 160~170
    SMA-13 185~190 175~180 185~190 165~175
    下载: 导出CSV

    表  6  沥青RTFOT前后试验结果

    Table  6.   Test results of asphalts before and after RTFOT

    检测指标 基质沥青 SBS改性沥青 PU改性沥青
    RTFOT前 RTFOT后 RTFOT前 RTFOT后 RTFOT前 RTFOT后
    25 ℃针入度/0.1 mm 70 42 54 48 20 23
    软化点/℃ 47.5 53.5 78.0 71.5 75.0 75.5
    复数模量/kPa 2.25 3.70 5.70 8.50 25.00 29.00
    破坏温度/℃ 65.91 69.43 77.40 80.03 85.71 86.87
    下载: 导出CSV

    表  7  紫外老化前后沥青软化点和针入度

    Table  7.   Softening points and penetrations of asphalts before and after ultraviolet aging

    紫外老化天数/d PU改性沥青 SBS改性沥青
    软化点/℃ 25 ℃针入度/0.1 mm 软化点/℃ 25 ℃针入度/0.1 mm
    0 75.0 20.0 78.0 54.0
    2 74.5 17.0 78.0 52.5
    5 73.0 17.0 77.0 53.0
    10 73.5 17.0 77.0 50.0
    15 71.0 18.0 76.0 52.5
    20 72.5 17.0 76.0 50.0
    下载: 导出CSV
  • [1] FU Zhen, SHEN Wan-qing, HUANG Yue, et al. Laboratory evaluation of pavement performance using modified asphalt mixture with a new composite reinforcing material[J]. International Journal of Pavement Research and Technology, 2017, 10 (6): 507-516. doi: 10.1016/j.ijprt.2017.04.001
    [2] BAZMARA B, TAHERSIMA M, BEHRAVAN A, et al. Influence of thermoplastic polyurethane and synthesized polyurethane additive in performance of asphalt pavements[J]. Construction and Building Materials, 2018, 166: 1-11. doi: 10.1016/j.conbuildmat.2018.01.093
    [3] 王朝辉, 李彦伟, 李蕊, 等. 低碳多功能电气石改性沥青制备及性能研究[J]. 中国公路学报, 2013, 26 (5): 34-41. doi: 10.3969/j.issn.1001-7372.2013.05.006

    WANG Chao-hui, LI Yan-wei, LI Rui, et al. Preparation of low-carbon multi-function tourmaline modified asphalt and its performance evaluation[J]. China Journal of Highway and Transport, 2013, 26 (5): 34-41. (in Chinese). doi: 10.3969/j.issn.1001-7372.2013.05.006
    [4] ZHU Tan-yong, MA Tao, HUANG Xiao-ming, et al. Evaluating the rutting resistance of asphalt mixtures using a simplified tri-axial repeated load test[J]. Construction and Building Materials, 2016, 116: 72-78. doi: 10.1016/j.conbuildmat.2016.04.102
    [5] 季节, 陈磊, 索智, 等. 高温和重载对DCLR改性沥青混合料抗变形能力的影响[J]. 交通运输工程学报, 2019, 19 (1): 1-8. doi: 10.3969/j.issn.1671-1637.2019.01.001

    JI Jie, CHEN Lei, SUO Zhi, et al. Effect of high temperature and heavy load on deformation resistance of DCLR modified asphalt mixture[J]. Journal of Traffic and Transportation Engineering, 2019, 19 (1): 1-8. (in Chinese). doi: 10.3969/j.issn.1671-1637.2019.01.001
    [6] 张海涛, 宫明阳, 杨斌, 等. 不同复合改性沥青混合料路用性能的对比研究[J]. 公路交通科技, 2019, 36 (2): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201902001.htm

    ZHANG Hai-tao, GONG Ming-yang, YANG Bin, et al. Comparative study on road performance of different composite modified asphalt mixtures[J]. Journal of Highway and Transportation Research and Development, 2019, 36 (2): 1-6. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201902001.htm
    [7] 李超, 王岚. 复合多聚磷酸改性沥青混合料疲劳性能[J]. 复合材料学报, 2018, 35 (8): 2150-2157. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201808020.htm

    LI Chao, WANG Lan. Fatigue properties of compound polyphosphoric acid modified asphalt mixture[J]. Acta Materiae Compositae Sinica, 2018, 35 (8): 2150-2157. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201808020.htm
    [8] 郝培文, 常睿, 刘红瑛, 等. 反应性弹性体三元共聚物改性沥青及其混合料性能与基质[J]. 复合材料学报, 2018, 35 (7): 1952-1962. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201807034.htm

    HAO Pei-wen, CHANG Rui, LIU Hong-ying, et al. Mechanism and performance of reactive elastomeric terpolymer modified asphalt and asphalt mixture[J]. Acta Materiae Compositae Sinica, 2018, 35 (7): 1952-1962. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201807034.htm
    [9] ZHANG Gao-wang, ZHANG Hong-liang, BU Xin-de, et al. Laboratory study on performances of bimaleimide/unsaturated polyester resin modified asphalt[J]. Construction and Building Materials, 2018, 179: 576-586. doi: 10.1016/j.conbuildmat.2018.05.210
    [10] 刘斌清, 仵江涛, 陈华鑫, 等. 多聚磷酸改性沥青的路用性能及机理分析[J]. 深圳大学学报(理工版), 2018, 35 (3): 292-298. https://www.cnki.com.cn/Article/CJFDTOTAL-SZDL201803008.htm

    LIU Bin-qing, WU Jiang-tao, CHEN Hua-xin, et al. Road performance and mechanism analysis of polyphosphoric acid modified asphalt[J]. Journal of Shenzhen University (Science and Engineering), 2018, 35 (3): 292-298. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SZDL201803008.htm
    [11] ZHANG Hong-liang, ZHANG Gao-wang, HAN Fei-fei, et al. A lab study to develop a bridge deck pavement using bisphenol a unsaturated polyester resin modified asphalt mixture[J]. Construction and Building Materials, 2018, 159: 83-98. doi: 10.1016/j.conbuildmat.2017.10.126
    [12] 谢鸿峰, 戴杰, 刘承果, 等. 环氧沥青的热分析[J]. 高分子材料科学与工程, 2009, 25 (11): 115-117. doi: 10.3321/j.issn:1000-7555.2009.11.032

    XIE Hong-feng, DAI Jie, LIU Cheng-guo, et al. Thermal analysis of epoxy asphalt[J]. Polymer Materials Science and Engineering, 2009, 25 (11): 115-117. (in Chinese). doi: 10.3321/j.issn:1000-7555.2009.11.032
    [13] CHEN Jun, YIN Xiao-jing, WANG Hao, et al. Evaluation of durability and functional performance of porous polyurethane mixture in porous pavement[J]. Journal of Cleaner Production, 2018, 188: 12-19. doi: 10.1016/j.jclepro.2018.03.297
    [14] 邵洪涛, 汪国平. 聚氨酯碎石透水路面的结构设计与配方调节[J]. 化工新型材料, 2015, 43 (6): 247-250. https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC201506085.htm

    SHAO Hong-tao, WANG Guo-ping. Structure design and material adjusting of polyurethane previous pavement[J]. New Chemical Mateials, 2015, 43 (6): 247-250. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC201506085.htm
    [15] 王火明, 李汝凯, 王秀, 等. 多孔隙聚氨酯碎石混合料强度及路用性能[J]. 中国公路学报, 2014, 27 (10): 24-30. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201410006.htm

    WANG Huo-ming, LI Ru-kai, WANG Xiu, et al. Strength and road performance for porous polyurethane mixture[J]. China Journal of Highway and Transport, 2014, 27 (10): 24-30. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201410006.htm
    [16] CONG Lin, WANG Tong-jing, TAN Le, et al. Laboratory evaluation on performance of porous polyurethane mixtures and OGFC[J]. Construction and Building Materials, 2018, 169: 436-442. doi: 10.1016/j.conbuildmat.2018.02.145
    [17] CHEN Jun, MA Xie, WANG Hao, et al. Experimental study on anti-icing and deicing performance of polyurethane concrete as road surface layer[J]. Construction and Building Materials, 2018, 161: 598-605. doi: 10.1016/j.conbuildmat.2017.11.170
    [18] XIA Lei, CAO Dong-wei, ZHANG Hai-yan, et al. Study on the classical and rheological properties of castor oil-polyurethane pre polymer (C-PU) modified asphalt[J]. Construction and Building Materials, 2016, 112: 949-955. doi: 10.1016/j.conbuildmat.2016.02.207
    [19] 刘颖, 辛星. 道路用聚氨酯改性沥青的制备工艺研究[J]. 中外公路, 2015, 35 (5): 255-259. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201505061.htm

    LIU Ying, XIN Xing. Study on preparation technology of road polyurethane modified asphalt[J]. Journal of China and Foreign Highway, 2015, 35 (5): 255-259. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201505061.htm
    [20] 刘颖, 辛星. 道路用聚氨酯改性沥青的性能研究[J]. 石油沥青, 2015, 29 (1): 48-53. doi: 10.3969/j.issn.1006-7450.2015.01.010

    LIU Ying, XIN Xing. Study on performance of polyurethane modified asphalt for pavement[J]. Petroleum Asphalt, 2015, 29 (1): 48-53. (in Chinese). doi: 10.3969/j.issn.1006-7450.2015.01.010
    [21] SUN Min, ZHENG Mu-lian, QU Guang-zhen, et al. Performance of polyurethane modified asphalt and its mixtures[J]. Construction and Building Materials, 2018, 191: 386-397. doi: 10.1016/j.conbuildmat.2018.10.025
    [22] 景欣, 王军威, 赵雨花, 等. 基于不同软段的聚氨酯弹性体耐热性能研究[J]. 聚氨酯工业, 2019, 34 (1): 16-19. doi: 10.3969/j.issn.1005-1902.2019.01.005

    JING Xin, WANG Jun-wei, ZHAO Yu-hua, et al. Study on the heat resistance of polyurethane elastomer based on different soft segments[J]. Polyurethane Industry, 2019, 34 (1): 16-19. (in Chinese). doi: 10.3969/j.issn.1005-1902.2019.01.005
    [23] 张昌辉, 刘筱, 张星, 等. 国内改性水性聚氨酯胶粘剂研究进展[J]. 中国胶粘剂, 2019, 28 (2): 51-56, 60. https://www.cnki.com.cn/Article/CJFDTOTAL-GXLJ201902014.htm

    ZHANG Chang-hui, LIU Xiao, ZHANG Xing, et al. Development of domestic modified waterborne polyurethane adhesive[J]. China Adhesives, 2019, 28 (2): 51-56, 60. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXLJ201902014.htm
    [24] 王治流, 刘全伟, 杨琥, 等. 红外光谱法对环氧沥青固化机理的研究[J]. 高分子材料科学与工程, 2005, 21 (3): 93-95. doi: 10.3321/j.issn:1000-7555.2005.03.022

    WANG Zhi-liu, LIU Quan-wei, YANG Hu, et al. The study on the curing reaction mechanism of epoxy asphalt by FTIR[J]. Polymer Materials Science and Engineering, 2005, 21 (3): 93-95. (in Chinese). doi: 10.3321/j.issn:1000-7555.2005.03.022
    [25] 曹雪娟, 唐伯明. 热分析动力学研究环氧沥青混凝土的固化条件[J]. 公路交通科技, 2008, 25 (7): 17-20. doi: 10.3969/j.issn.1002-0268.2008.07.004

    CAO Xue-juan, TANG Bo-ming. Study on cure reaction condition of epoxy asphalt concrete by thermal analysis kinetics[J]. Journal of Highway and Transportation Research and Development, 2008, 25 (7): 17-20. (in Chinese). doi: 10.3969/j.issn.1002-0268.2008.07.004
    [26] 张倩, 范哲哲, 张尚龙, 等. 沥青混合料相位角预估模型[J]. 长安大学学报(自然科学版), 2018, 38 (2): 19-25. doi: 10.3969/j.issn.1671-8879.2018.02.003

    ZHANG Qian, FAN Zhe-zhe, ZHANG Shang-long, et al. Prediction model of phase angle of asphalt mixture[J]. Journal of Chang'an University (Natural Science Edition), 2018, 38 (2): 19-25. (in Chinese). doi: 10.3969/j.issn.1671-8879.2018.02.003
    [27] 陈华鑫, 陈拴发, 王秉纲. SBS改性沥青低温粘度的动态剪切流变测试方法[J]. 同济大学学报(自然科学版), 2009, 37 (4): 505-509. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200904020.htm

    CHEN Hua-xin, CHEN Shuan-fa, WANG Bing-gang. Low-temperature viscosity determination of SBS modified asphalt with dynamic shear rheometer method[J]. Journal of Tongji University (Natural Science), 2009, 37 (4): 505-509. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200904020.htm
    [28] ZHANG Dong-mei, ZHANG Heng-long, SHI Cai-jun. Investigation of aging performance of SBS modified asphalt with various aging methods[J]. Construction and Building Materials, 2017, 145: 445-451. doi: 10.1016/j.conbuildmat.2017.04.055
    [29] CHEN Mei-zhu, LENG Bin-bin, WU Shao-peng, et al. Physical, chemical and rheological properties of waste edible vegetable oil rejuvenated asphalt binders[J]. Construction and Building Materials, 2014, 66: 286-298. doi: 10.1016/j.conbuildmat.2014.05.033
    [30] 石越峰, 季节, 索智, 等. 基于DSR和BBR试验的TLA改性沥青胶浆高低温性能研究[J]. 公路工程, 2016, 41 (5): 72-76. doi: 10.3969/j.issn.1674-0610.2016.05.015

    SHI Yue-feng, JI Jie, SUO Zhi, et al. Study on the high-and-low-temperature properties of TLA modified asphalt mortar based on DSR and BBR[J]. Highway Engineering, 2016, 41 (5): 72-76. (in Chinese). doi: 10.3969/j.issn.1674-0610.2016.05.015
    [31] 曹东伟, 卢杰, 张海燕, 等. 全透式沥青路面专用高黏度改性沥青性能对比[J]. 长安大学学报(自然科学版), 2019, 39 (1): 17-24. doi: 10.3969/j.issn.1671-8879.2019.01.004

    CAO Dong-wei, LU Jie, ZHANG Hai-yan, et al. Contrastive on performance of fully permeable asphalt pavement dedicated high-viscosity modified asphalt[J]. Journal of Chang'an University (Natural Science Edition), 2019, 39 (1): 17-24. (in Chinese). doi: 10.3969/j.issn.1671-8879.2019.01.004
    [32] 姚辉. 微纳米材料改性沥青结合料与混合料性能研究[D]. 长沙: 中南大学, 2012.

    YAO Hui. Performance research of micro- and nano-modified asphalt binders and mixtures[D]. Changsha: Central South University, 2012. (in Chinese).
    [33] 董雨明. 硬质沥青及其混合料流变特性与低温性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.

    DONG Yu-ming. Research on rheological property and low temperature performance of hard grade bitumen and its mixture[D]. Harbin: Harbin Institute of Technology, 2013. (in Chinese).
  • 加载中
图(14) / 表(7)
计量
  • 文章访问数:  1681
  • HTML全文浏览量:  949
  • PDF下载量:  530
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-22
  • 刊出日期:  2019-04-25

目录

    /

    返回文章
    返回