留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无黏性土的电阻率CPTU状态参数确定方法及其液化评价

段伟 蔡国军 刘松玉 邹海峰 储亚

段伟, 蔡国军, 刘松玉, 邹海峰, 储亚. 无黏性土的电阻率CPTU状态参数确定方法及其液化评价[J]. 交通运输工程学报, 2019, 19(2): 59-68. doi: 10.19818/j.cnki.1671-1637.2019.02.006
引用本文: 段伟, 蔡国军, 刘松玉, 邹海峰, 储亚. 无黏性土的电阻率CPTU状态参数确定方法及其液化评价[J]. 交通运输工程学报, 2019, 19(2): 59-68. doi: 10.19818/j.cnki.1671-1637.2019.02.006
DUAN Wei, CAI Guo-jun, LIU Song-yu, ZOU Hai-feng, CHU Ya. Determining method of cohesionless soil state parameter based on resistivity CPTU and liquefaction evaluation[J]. Journal of Traffic and Transportation Engineering, 2019, 19(2): 59-68. doi: 10.19818/j.cnki.1671-1637.2019.02.006
Citation: DUAN Wei, CAI Guo-jun, LIU Song-yu, ZOU Hai-feng, CHU Ya. Determining method of cohesionless soil state parameter based on resistivity CPTU and liquefaction evaluation[J]. Journal of Traffic and Transportation Engineering, 2019, 19(2): 59-68. doi: 10.19818/j.cnki.1671-1637.2019.02.006

无黏性土的电阻率CPTU状态参数确定方法及其液化评价

doi: 10.19818/j.cnki.1671-1637.2019.02.006
基金项目: 

国家重点研发计划项目 2016YFC0800200

国家自然科学基金项目 41672294

国家自然科学基金项目 41877231

江苏省研究生科研与实践创新计划项目 KYCX17_0139

详细信息
    作者简介:

    段伟(1989-), 男, 山西太原人, 东南大学工学博士研究生, 从事现代原位测试技术研究

    蔡国军(1977-), 男, 山东兖州人, 东南大学教授, 工学博士

  • 中图分类号: U416.1

Determining method of cohesionless soil state parameter based on resistivity CPTU and liquefaction evaluation

More Information
  • 摘要: 为研究基于现场原位测试技术的状态参数评估新方法, 以宿迁—新沂高速公路工程为背景, 利用电阻率孔压静力触探对饱和无黏性土进行了现场原位测试; 参考已有原位测试状态参数计算法的均值, 联合电阻率与土类指数建立了状态参数计算方法; 利用该方法评估的状态参数进行液化评价。分析结果表明: 状态参数与土类指数呈正比关系, 而土类指数与电阻率呈反比关系, 土类指数可作为连接无黏性土状态性能和电学性能的有效指标之一; 建立的电阻率CPTU状态参数计算方法所评估的状态参数沿深度变化趋势与已有方法一致, 提出的电阻率CPTU状态参数评估法主要适用土类指数为1.8~2.6的粉土和粉砂; 根据电阻率CPTU法计算的无黏性土原位状态参数与相对密实度呈现良好的线性关系, 变化趋势相反, 可作为一种相对密实度常用指标的有效替代参数来进行土体密实状态的评估; 基于电阻率CPTU法计算的无黏性土原位状态参数评估的液化阻力比与国际通用法基本一致, 判别粉质砂土层8 m以下为液化层, 与标准贯入试验结果相符, 状态参数可有效地用于液化势的可靠判别。

     

  • 图  1  状态参数定义

    Figure  1.  Definition of state parameter

    图  2  整体研究流程

    Figure  2.  Overall research flow

    图  3  现场RCPTU试验

    Figure  3.  RCPTU field tests

    图  4  试验孔布点

    Figure  4.  Layout of test holes

    图  5  典型RCPTU测试结果

    Figure  5.  Typical test results of RCPTU

    图  6  电阻率和状态参数对比

    Figure  6.  Comparison between resistivity and state parameter

    图  7  Q2ρ2I2关系

    Figure  7.  Relationship among Q2, ρ2 and I2

    图  8  ψρ2I2关系

    Figure  8.  Relationship among ψ, ρ2 and I2

    图  9  状态参数预测方法对比

    Figure  9.  Comparison of state parameter prediction methods

    图  10  相对密实度与状态参数对比

    Figure  10.  Comparison between relative density and state parameter

    图  11  相对密实度与状态参数关系

    Figure  11.  Relationship between relative density and state parameter

    图  12  基于状态参数表示的现场历史液化数据

    Figure  12.  Field case history data on liquefaction based on state parameter

    图  13  液化判别结果

    Figure  13.  Results of liquefaction discrimination

    表  1  影响土体电阻率相关因素汇总

    Table  1.   Summary of related factors affecting soil resistivity

    相关变量 电阻率 影响程度
    孔隙率 增加 ★★★
    饱和度 增加 ★★★
    盐浓度 增加 ★★★
    粒径 减小 ★★
    级配 增加 ★★
    温度 增加 ★★
    活性 增加 ★★
    下载: 导出CSV

    表  2  原位测试CPTU状态参数确定方法汇总

    Table  2.   Summary of CPTU in-situ testing methods to evaluate state parameter

    方法 公式 参数及其他说明
    1 ψ=-ln[Q0(1-B)/k]m k=(3+0.85/λ)Μm=11.9-13.3λ λ=1/ (34-10I1)
    2 λ=F/10
    3 ψ=0.56-0.33lg (Q1) 基于Been等提出的方法
    4 电阻率CPTU状态参数计算方法
    下载: 导出CSV

    表  3  主要物理力学指标

    Table  3.   Main physico-mechanical indexes

    名称 层厚/m 相对体积质量 细粒含量/% 含水量/% 液限/%
    素填土 1.1 2.72 15.2 21.4 27.6
    粉土 4.1 2.70 3.6 24.7 29.1
    粉质砂土 9.8 2.69 5.2 29.8 28.4
    粉土夹砂 未揭穿 2.68 5.7 27.2 29.8
    下载: 导出CSV
  • [1] BEEN K, JEFFERIES M G. A state parameter for sands[J]. Géotechnique, 1985, 35 (2): 99-112. doi: 10.1680/geot.1985.35.2.99
    [2] JEFFERIES M G. Nor-Sand: a simple critical state model for sand[J]. Géotechnique, 1993, 43 (1): 91-103. doi: 10.1680/geot.1993.43.1.91
    [3] DAFALIAS Y F. Must critical state theory be revisited to include fabric effects?[J]. Acta Geotechnica, 2016, 11 (3): 479-491. doi: 10.1007/s11440-016-0441-0
    [4] SABERI M, ANNAN C D, KONRAD J M, et al. A critical state two-surface plasticity model for gravelly soil-structure interfaces under monotonic and cyclic loading[J]. Computers and Geotechnics, 2016, 80: 71-82. doi: 10.1016/j.compgeo.2016.06.011
    [5] WEI X, YANG J. A critical state constitutive model for clean and silty sand[J]. Acta Geotechnica, 2018, 13: 1-17. doi: 10.1007/s11440-017-0570-0
    [6] GAO Zhi-wei, ZHAO Ji-dong, LI Xiang-song, et al. A critical state sand plasticity model accounting for fabric evolution[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38 (4): 370-390. doi: 10.1002/nag.2211
    [7] 徐舜华, 郑刚, 徐光黎. 考虑剪切硬化的砂土临界状态本构模型[J]. 岩土工程学报, 2009, 31 (6): 953-958. doi: 10.3321/j.issn:1000-4548.2009.06.021

    XU Shun-hua, ZHENG Gang, XU Guang-li. Critical state constitutive model of sand with shear hardening[J]. Chinese Journal of Geotechnical Engineering, 2009, 31 (6): 953-958. (in Chinese). doi: 10.3321/j.issn:1000-4548.2009.06.021
    [8] 赵成刚. 热动力学的稳态与非饱和土的临界状态[J]. 岩土工程学报, 2012, 34 (4): 730-733. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201204024.htm

    ZHAO Cheng-gang. Thermodynamic steady state and critical state for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34 (4): 730-733. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201204024.htm
    [9] 赵成刚, 尤昌龙. 饱和砂土液化与稳态强度[J]. 土木工程学报, 2001, 34 (3): 90-96. doi: 10.3321/j.issn:1000-131X.2001.03.016

    ZHAO Cheng-gang, YOU Chang-long. Liquefaction and steady state strength[J]. China Civil Engineering Journal, 2001, 34 (3): 90-96. (in Chinese). doi: 10.3321/j.issn:1000-131X.2001.03.016
    [10] YANG J, LIU X, GUO Y, et al. A unified framework for evaluating in situ state of sand with varying fines content[J]. Géotechnique, 2017, 67 (2): 177-183.
    [11] DUAN Wei, CAI Guo-jun, LIU Song-yu, et al. Assessment of ground improvement by vibro-compaction method for liquefiable deposits from in-situ testing data[J]. International Journal of Civil Engineering, 2018, 4: 1-13. doi: 10.28991/cej-030964
    [12] REID D. Estimating slope of critical state line from cone penetration test—an update[J]. Canadian Geotechnical Journal, 2015, 52 (1): 46-57. doi: 10.1139/cgj-2014-0068
    [13] SHUTTLE D, JEFFERIES M G. Determining silt state from CPTU[J]. Geotechnical Research, 2016, 3 (3): 90-118. doi: 10.1680/jgere.16.00008
    [14] BEEN K, JEFFERIES M G, CROOKS J H A, et al. The cone penetration test in sands: Part Ⅱ, general inference of state[J]. Géotechnique, 1987, 37 (3): 285-299. doi: 10.1680/geot.1987.37.3.285
    [15] PLEWES H D, DAVIES M P, JEFFERIES M G. CPT based screening procedure for evaluating liquefaction susceptibility[C]//Canadian Geotechnical Society. Proceedings of the 45th Canadian Geotechnical Conference. Toronto: BiTech Publishers, 1992: 1-9.
    [16] ROBERTSON P K. Interpretation of cone penetration tests—a unified approach[J]. Canadian Geotechnical Journal, 2009, 46 (11): 1337-1355. doi: 10.1139/T09-065
    [17] CAMPANELLA R G, KOKAN M J. A new approach to measuring dilatancy in saturated sands[J]. Geotechnical Testing Journal, 1993, 16 (4): 485-495. doi: 10.1520/GTJ10288J
    [18] WINDLE D, WROTH C P. Electrical resistivity method for determining volume changes that occur during a pressuremeter test[C]//ASCE. Proceedings of In Situ Measurement of Soil Properties. Reston: ASCE, 1975: 497-510.
    [19] JACKSON P D, SMITH D T, STANFORD P N. Resistivity-porosity-particle shape relationships for marine sands[J]. Geophysics, 1978, 43 (6): 1250-1268. doi: 10.1190/1.1440891
    [20] 孔令明, 罗汀, 姚仰平. 率相关本构模型的临界状态描述[J]. 岩土力学, 2015, 36 (9): 2442-2450. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201509003.htm

    KONG Ling-ming, LUO Ting, YAO Yang-ping. Description of critical state for rate-dependent constitutive models[J]. Rock and Soil Mechanics, 2015, 36 (9): 2442-2450. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201509003.htm
    [21] 黄茂松, 姚仰平, 尹振宇, 等. 土的基本特性及本构关系与强度理论[J]. 土木工程学报, 2016, 49 (7): 9-35. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201607002.htm

    HUANG Mao-song, YAO Yang-ping, YIN Zhen-yu, et al. An overview on elementary mechanical behaviors, constitutive modeling and failure criterion of soils[J]. China Civil Engineering Journal, 2016, 49 (7): 9-35. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201607002.htm
    [22] RAHMAN M M, SITHARAM T G. Cyclic liquefaction screening of sand with non-plastic fines: critical state approach[J]. Geoscience Frontiers, 2018, 9: 1-10.
    [23] ARCHIE G E. The electrical resistivity log as an aid in determining some reservoir characteristics[J]. Well Logging Technology, 1942, 146: 54-61.
    [24] RINALDI V A, CUESTAS G A. Ohmic conductivity of a compacted silty clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128 (10): 824-835. doi: 10.1061/(ASCE)1090-0241(2002)128:10(824)
    [25] 邹海峰, 刘松玉, 蔡国军, 等. 基于电阻率CPTU的饱和砂土液化势评价研究[J]. 岩土工程学报, 2013, 35 (7): 1280-1288. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201307016.htm

    ZOU Hai-feng, LIU Song-yu, CAI Guo-jun, et al. Evaluation of liquefaction potential of saturated sands based on piezocone penetration tests on resistivity[J]. Chinese Journal of Geotechnical Engineering, 2013, 35 (7): 1280-1288. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201307016.htm
    [26] WROTH C P. The interpretation of in situ soil tests[J]. Géotechnique, 1984, 34 (4): 449-489. doi: 10.1680/geot.1984.34.4.449
    [27] 储亚, 蔡国军, 刘松玉. 基于CPTU原位测试状态参数的液化判别方法研究[J]. 地震工程学报, 2014, 36 (4): 905-910. doi: 10.3969/j.issn.1000-0844.2014.04.0905

    CHU Ya, CAI Guo-jun, LIU Song-yu. Study on liquefaction evaluation method based on state parameters of CPTU in situ measurement[J]. China Earthquake Engineering Journal, 2014, 36 (4): 905-910. (in Chinese). doi: 10.3969/j.issn.1000-0844.2014.04.0905
    [28] JAMIOLKOWSKI M, PRESTI D C F L, MANASSERO M. Evaluation of relative density and shear strength of sands from CPT and DMT[J]. Soil Behavior and Soft Ground Construction, 2003 (119): 201-238.
    [29] YOUD T L, IDRISS I M. Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127 (4): 297-313. doi: 10.1061/(ASCE)1090-0241(2001)127:4(297)
    [30] BEEN K. Characterizing mine tailings for geotechnical design[J]. Australian Geomechanics Journal, 2016, 50 (4): 59-78.
    [31] SEED H B, IDRISS I M, ARANGO I. Evaluation of liquefaction potential using field performance data[J]. Journal of Geotechnical Engineering, 1983, 109 (3): 458-482. doi: 10.1061/(ASCE)0733-9410(1983)109:3(458)
    [32] JUANG C H, FANG S Y, KHOR E H. First-order reliability method for probabilistic liquefaction triggering analysis using CPT[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132 (3): 337-350. doi: 10.1061/(ASCE)1090-0241(2006)132:3(337)
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  875
  • HTML全文浏览量:  159
  • PDF下载量:  314
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-03
  • 刊出日期:  2019-04-25

目录

    /

    返回文章
    返回