留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

偏载下水润滑尾轴承分布式动力学特性

欧阳武 程启超 王磊 金勇

欧阳武, 程启超, 王磊, 金勇. 偏载下水润滑尾轴承分布式动力学特性[J]. 交通运输工程学报, 2019, 19(2): 92-100. doi: 10.19818/j.cnki.1671-1637.2019.02.009
引用本文: 欧阳武, 程启超, 王磊, 金勇. 偏载下水润滑尾轴承分布式动力学特性[J]. 交通运输工程学报, 2019, 19(2): 92-100. doi: 10.19818/j.cnki.1671-1637.2019.02.009
OUYANG Wu, CHENG Qi-chao, WANG Lei, JIN Yong. Distributed dynamics characteristics of water-lubricated stern bearing under offset load[J]. Journal of Traffic and Transportation Engineering, 2019, 19(2): 92-100. doi: 10.19818/j.cnki.1671-1637.2019.02.009
Citation: OUYANG Wu, CHENG Qi-chao, WANG Lei, JIN Yong. Distributed dynamics characteristics of water-lubricated stern bearing under offset load[J]. Journal of Traffic and Transportation Engineering, 2019, 19(2): 92-100. doi: 10.19818/j.cnki.1671-1637.2019.02.009

偏载下水润滑尾轴承分布式动力学特性

doi: 10.19818/j.cnki.1671-1637.2019.02.009
基金项目: 

国家自然科学基金项目 51609191

详细信息
    作者简介:

    欧阳武(1987-), 男, 湖北洪湖人, 武汉理工大学副教授, 工学博士, 从事润滑理论、转子动力学与新型电力推进技术研究

  • 中图分类号: U664.21

Distributed dynamics characteristics of water-lubricated stern bearing under offset load

More Information
  • 摘要: 为了揭示偏载作用下大长径比水润滑尾轴承的流体动力学行为, 提出了分布式动力学特性参数测试方法; 在船舶大型推进轴系模拟试验台上, 以直径为324 mm、长度为1 200 mm的大尺寸水润滑尾轴承为试验对象, 在轴承上、沿轴线方向选取3个截面, 每个截面布置相互垂直的2个电涡流传感器, 以获取轴心轨迹; 在转轴上、沿轴线方向选取4个截面, 每个截面各布置1个微型压力传感器, 并随轴一起旋转, 采用无线遥测技术获取4个截面的全周水膜压力分布; 通过改变相邻轴承的标高来调整转轴倾斜程度, 研究了转速和标高对试验轴承水膜压力分布和轴颈运行状态的影响规律。研究结果表明: 偏载导致离悬臂端最近的截面压力测试值明显大于其他截面, 最大值约为3.6 MPa; 轴承的润滑状态沿轴向呈现分区特性, 越靠近悬臂端, 弹流润滑特征越明显, 且不同的轴承分段需要不同的速度来产生动压水膜; 离悬臂端最近的截面压力曲线顶部的“水囊”随转速升高而出现, 但在220 r·min-1时变得不明显, 各截面压力分布出现明显的负压现象; 轴颈在轴承孔中的空间形态较复杂, 在轴承两侧严重下弯, 在中部拱起, 并且不同轴承截面的偏位角不同, 离悬臂端越远, 轴心轨迹面积越大。可见, 与具有单一润滑状态和直线轴颈的滑动轴承相比, 偏载下大长径比水润滑尾轴承的流体动力学模型应考虑轴向润滑状态分区、弯曲轴颈和负压等因素。

     

  • 图  1  试验台

    Figure  1.  Test stand

    图  2  试验轴承结构

    Figure  2.  Structure of test bearing

    图  3  压力传感器分布

    Figure  3.  Distribution of pressure sensors

    图  4  压力传感器的安装方案

    Figure  4.  Installation scheme of pressure sensor

    图  5  KMT的信号无线遥测系统

    Figure  5.  Signal wireless telemetry system of KMT

    图  6  电涡流传感器周向布置方案

    Figure  6.  Circumferential arrangement plan of eddy current sensors

    图  7  轴承截面水膜压力分布

    Figure  7.  Water film pressure distributions of bearing sections

    图  8  轴承截面最大水膜压力对比

    Figure  8.  Comparison of maximum water film pressures of bearing sections

    图  9  不同转速下轴承截面水膜压力分布

    Figure  9.  Water film pressure distributions of bearing sections at different rotational speeds

    图  10  不同标高下轴承截面的水膜压力分布

    Figure  10.  Water film pressure distributions of bearing sections at different elevations

    图  11  转速为165 r·min-1时轴承截面的轴心轨迹

    Figure  11.  Axis orbits of bearing sections when rotating speed is 165 r·min-1

    图  12  不同转速下轴承截面轴心轨迹

    Figure  12.  Axis orbits of bearing sections at different rotating speeds

    表  1  试验轴承主要参数

    Table  1.   Main parameters of test bearing

    参数 取值
    内直径/mm 324
    轴承长度/mm 1 200
    水槽半径/mm 94.5
    水槽数量 2
    槽心距/mm 79.5
    内衬厚度/mm 39.84
    内衬厚度(槽处) /mm 7.92
    下载: 导出CSV
  • [1] 严新平, 袁成清, 白秀琴, 等. 绿色船舶的摩擦学研究现状与进展[J]. 摩擦学学报, 2012, 32 (4): 410-420. https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX201204015.htm

    YAN Xin-ping, YUAN Cheng-qing, BAI Xiu-qin, et al. Research status and advances of tribology of green ship[J]. Tribology, 2012, 32 (4): 410-420. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX201204015.htm
    [2] 严新平, 梁兴鑫, 刘正林, 等. 船舶水润滑尾轴承服役性能研究及其进展[J]. 中国造船, 2017, 58 (3): 221-232. doi: 10.3969/j.issn.1000-4882.2017.03.022

    YAN Xin-ping, LIANG Xing-xin, LIU Zheng-lin, et al. Research progress of marine water lubricated stern bearing[J]. Shipbuilding of China, 2017, 58 (3): 221-232. (in Chinese). doi: 10.3969/j.issn.1000-4882.2017.03.022
    [3] ORNDORFFJR R J. New UHMWPE/rubber bearing alloy[J]. Journal of Tribology, 2000, 122 (1): 367-373. doi: 10.1115/1.555361
    [4] SHI Fang-hui, SALANT R F. A mixed soft elastohy-drodynamic lubrication model with interasperity cavitation and surface shear deformation[J]. Journal of Tribology, 2000, 122 (1): 308-316. doi: 10.1115/1.555358
    [5] HOOKE C J, O'DONOGHUE J P. Elastohydrodynamic lubrication of soft, highly deformed contacts[J]. Journal of Mechanical Engineering Science, 1972, 14 (1): 34-48. doi: 10.1243/JMES_JOUR_1972_014_008_02
    [6] HOOKE C J. Roughness in soft elastohydrodynamically lubricated contacts—attenuation and the complementary wave reassessed[J]. Journal of Engineering Tribology, 2015, 230 (11): 1325-1335.
    [7] HOOKE C J, HUANG P. Elastohydrodynamic lubrication of soft viscoelastic materials in line contact[J]. Journal of Engineering of Tribology, 1997, 211: 185-194.
    [8] LAHMAR M, ELLAGOUNE S, BOU-SAÏD B. Elastohydro-dynamic lubrication analysis of a compliant journal bearing considering static and dynamic deformations of the bearing liner[J]. Tribology Transactions, 2010, 53 (3): 349-368. doi: 10.1080/10402000903312356
    [9] HU Yuan-zhong, ZHU Dong. A full numerical solution to the mixed lubrication in point contacts[J]. Journal of Tribology, 2000, 122 (1): 1-9. doi: 10.1115/1.555322
    [10] DE KRAKER A, VAN OSTAYEN R A, RIXEN D J. Calculation of stribeck curves for (water) lubricated journal bearings[J]. Tribology International, 2007, 40 (3): 459-469. doi: 10.1016/j.triboint.2006.04.012
    [11] 王悦昶, 刘莹, 黄伟峰, 等. 混合润滑理论模型进化与工程应用[J]. 摩擦学学报, 2016, 36 (4): 520-530. https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX201604018.htm

    WANG Yue-chang, LIU Ying, HUANG Wei-feng, et al. The progress and engineering application of theoretical model for mixed lubrication[J]. Tribology, 2016, 36 (4): 520-530. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX201604018.htm
    [12] HAN Yan-feng, XIONG Shang-wu, WANG Jia-xu, et al. A new singularity treatment approach for journal-bearing mixed lubrication modeled by the finite difference method with a herringbone mesh[J]. Journal of Tribology, 2016, 138 (1): 011704-1-10. doi: 10.1115/1.4031138
    [13] 欧阳武, 陈润霖, 彭林, 等. 考虑局部固体接触的滑动轴承主刚度和主阻尼研究[J]. 西安交通大学学报, 2014, 48 (1): 112-117. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201401019.htm

    OUYANG Wu, CHEN Run-lin, PENG Lin, et al. Main stiffness and main damping of sliding bearings considering local contact[J]. Journal of Xi'an Jiaotong University, 2014, 48 (1): 112-117. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201401019.htm
    [14] OUYANG Wu, ZHANG Xue-bing, JIN Yong, et al. Experimental study on the dynamic performance of water-lubricated rubber bearings with local contact[J]. Shock and Vibration, 2018, 2018: 1-10.
    [15] QIN Hong-lin, ZHOU Xin-cong, ZHAO Xin-ze, et al. A new rubber/UHMWPE alloy for water-lubricated stern bearings[J]. Wear, 2015, 328/329: 257-261. doi: 10.1016/j.wear.2015.02.016
    [16] DONG Cong-lin, SHI Li-chun, LI Lyu-zhou, et al. Stick-slip behaviours of water lubrication polymer materials under low speed conditions[J]. Tribology International, 2017, 106: 55-61. doi: 10.1016/j.triboint.2016.10.027
    [17] ZHANG Zhen-guo, ZHANG Zhi-yi, HUANG Xiu-chang, et al. Stability and transient dynamics of a propeller-shaft system as induced by nonlinear friction acting on bearing-shaft contact interface[J]. Journal of Sound and Vibration, 2014, 333 (12): 2608-2630. doi: 10.1016/j.jsv.2014.01.026
    [18] MITSUI J, AKUTSU Y. Analysis of shaft alignment taking oil film characteristics of stern tube bearing into consideration: Part 1, theoretical analysis[J]. Bulletin of JSME, 1984, 27 (224): 317-324. doi: 10.1299/jsme1958.27.317
    [19] MURAWSKI L. Shaft line alignment analysis taking ship construction flexibility and deformations into consideration[J]. Marine Structures, 2005, 18 (1): 62-84. doi: 10.1016/j.marstruc.2005.05.002
    [20] HE Tao, ZOU De-quan, LU Xi-qun, et al. Mixed-lubrication analysis of marine stern tube bearing considering bending deformation of stern shaft and cavitation[J]. Tribology International, 2014, 73: 108-116. doi: 10.1016/j.triboint.2014.01.013
    [21] LITWIN W. Influence of local bush wear on water lubricated sliding bearing load carrying capacity[J]. Tribology International, 2016, 103: 352-358. doi: 10.1016/j.triboint.2016.06.044
    [22] SUN Jun, ZHU Xin-long, ZHANG Liang, et al. Effect of surface roughness, viscosity-pressure relationship and elastic deformation on lubrication performance of misaligned journal bearings[J]. Industrial Lubrication and Tribology, 2014, 66 (3): 337-345. doi: 10.1108/ilt-12-2011-0110
    [23] XU Guo-hui, ZHOU Jian, GENG Hai-peng, et al. Research on the static and dynamic characteristics of misaligned journal bearing considering the turbulent and thermohydrodynamic effects[J]. Journal of Tribology, 2015, 137 (2): 024504-1-8. doi: 10.1115/1.4029333
    [24] ZHANG Xiu-li, YIN Zhong-wei, JIANG Dan, et al. Load carrying capacity of misaligned hydrodynamic water-lubricated plain journal bearings with rigid bush materials[J]. Tribology International, 2016, 99: 1-13. doi: 10.1016/j.triboint.2016.02.038
    [25] CABRERA D L, WOOLLEY N H, ALLANSON D R, et al. Film pressure distribution in water-lubricated rubber journal bearings[J]. Journal of Engineering Tribology, 2005, 219: 125-132.
    [26] ZHOU Guang-wu, WANG Jia-xu, HAN Yan-feng, et al. An experimental study on film pressure circumferential distribution of water lubricated rubber bearings with multiple grooves[J]. Tribology Transactions, 2017, 60 (3): 385-391. doi: 10.1080/10402004.2016.1163760
    [27] LITWIN W. Experimental research on water lubricated three layer sliding bearing with lubrication grooves in the upper part of the bush and its comparison with a rubber bearing[J]. Tribology International, 2015, 82: 153-161. doi: 10.1016/j.triboint.2014.10.002
    [28] LITWIN W. Properties comparison of rubber and three layer PTFE-NBR-bronze water lubricated bearings with lubricating grooves along entire bush circumference based on experimental tests[J]. Tribology International, 2015, 90: 404-411. doi: 10.1016/j.triboint.2015.03.039
    [29] LITWIN W, DYMARSKI C. Experimental research on water lubricated marine stern tube bearings in conditions of improper lubrication and cooling causing rapid bush wear[J]. Tribology International, 2016, 95: 449-455. doi: 10.1016/j.triboint.2015.12.005
    [30] WANG Nan, MENG Qing-feng, WANG Peng-peng, et al. Experimental research on film pressure distribution of water-lubricated rubber bearing with multiaxial grooves[J]. Journal of Fluids Engineering, 2013, 135 (8): 084501-1-6. doi: 10.1115/1.4024147
    [31] PIERRE I, BOUYER J, FILLON M. Thermohydrodynamic behavior of misaligned plain journal bearings: theoretical and experimental approaches[J]. Tribology Transactions, 2004, 47 (4): 594-604. doi: 10.1080/05698190490513974
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  830
  • HTML全文浏览量:  165
  • PDF下载量:  308
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-09
  • 刊出日期:  2019-04-25

目录

    /

    返回文章
    返回