-
摘要: 选取具有典型流态化货物特征的红土镍矿、高岭土与红砂土进行了临界含水率和流态化试验, 测定了其临界含水率; 利用激励横摇装置开展了不同激励幅值与频率的激励横摇运动试验, 对比了3种不同货物在不同含水率下倾覆力和力矩的时历特性; 设计了倾覆机理试验, 选择临界含水率红土镍矿作为试验样本, 在波浪水槽中造波激励舱段横摇运动, 再现了红土镍矿运输船舶的倾覆过程, 利用高速摄像机记录了自由液面变化情况, 通过图像处理技术对自由液面进行分割, 根据自由液面情况分析了红土镍矿运输船舶倾覆过程中舱段的浮心和重心变化。试验结果表明: 红土镍矿、红砂土、高岭土的临界含水率分别为33.6%、22.0%、39.4%;对于具有不同性质的土, 在相同激励条件下, 晃荡力与力矩呈现出不同的性质; 当相位差为90°与270°时, 不对称力矩较相位差为0°与180°时增大4.37倍; 红土镍矿运输船舶倾覆主要原因为流态化货物晃荡导致横摇力矩增大、动稳性降低而发生倾覆, 同时, 晃荡力矩与货物性质、激励周期、黏性、激励幅值等多种因素有关。Abstract: The laterite-nickel ore, kaolin and red sand soil with the characteristics of fluidization typical cargoes were selected to conduct the critical water content test and fluidization test, and the critical water content rate was obtained. Using the excitation rolling device, the excitation rolling motion experiments with different excitation amplitudes and frequencies were carried out. The time history characteristics of overturning force and moment of three different cargoes under different water content rates were compared. Capsizing mechanism test was designed, the laterite-nickel ore with critical water content rate was chose as a sample, and the waves were generated in wave tank to excite rolling motion so as to recreate the capsizing process of the laterite-nickel ore transport ship. The high-speed camera was used to catch the variation of free liquid surface. The free liquid surface was segmented by using the digital processing technology. The changes of floating center and barycenter of laterite-nickel ore transport ship during the capsizing process were also discussed based on the free liquid surface's condition. Analysis result shows that the critical water content rates of the laterite-nickel ore, red sand soil and kaolin are 33.6%, 22.0% and 39.4%, respectively. The sloshing force and moment of soils with different natures show different properties even though their excitation conditions are the same. When the phase differences are 90° and 270°, the asymmetric moment increases 4.37 times as much as that when the phase differences are 0° and 180°. The main reason for the capsizing of laterite-nickel ore transport ship is that the liquid cargo's sloshing results in that the rolling moment increases and the dynamic stability decreases. At the same time, the sloshing moment is related to the nature of goods, period of excitation, viscosity, amplitude of incentive and many other factors.
-
表 1 实船与模型舱段主尺度参数
Table 1. Principal dimension parameters of real ship and test cabin segment
参数 实船 模型 舱长/m 0.60 型宽/m 32.30 0.49 设计吃水/m 12.60 0.27 顶板倒角/ (°) 30 30 底板倒角/ (°) 45 45 重心距基线高度/m 12.65 0.19 镍矿距内底板高/m 8.00 0.12 表 2 试验工况
Table 2. Test conditions
参数 Ⅰ号土 Ⅱ号土 Ⅲ号土 水 激励周期/s 12.00、10.00、5.00、3.00、2.00、1.57、1.00 12.00、10.00、5.00、3.00、2.00、1.57、1.00 12.00、10.00、5.00、3.00、2.00、1.57、1.00 12.00、10.00、5.00、3.00、2.00、1.57、1.00 含水率/% 3、32、35、40 20、22、25、30、40 25、30、35、40、42 100 横摇幅值/ (°) 10、7 10、7 10、7 10、7 -
[1] 燕凌羽, 王安建. 全球镍资源供需格局浅析[J]. 中国矿业, 2016, 25 (4): 1-5. doi: 10.3969/j.issn.1004-4051.2016.04.001YAN Ling-yu, WANG An-jian. Analysis of global nickel supply and demand patterns[J]. China Mining Magazine, 2016, 25 (4): 1-5. (in Chinese). doi: 10.3969/j.issn.1004-4051.2016.04.001 [2] 王祎博. 船载镍矿的安全运输技术研究[D]. 大连: 大连海事大学, 2012.WANG Yi-bo. Research on the safe shipment technology of nickel ore[D]. Dalian: Dalian Maritime University, 2012. (in Chinese). [3] 贾康. 红土镍矿流态化机理及内因参数研究[D]. 大连: 大连海事大学, 2016.JIA Kang. Study on the mechanism and intrinsic factors of laterite nickel ore's liquefaction[D]. Dalian: Dalian Maritime University, 2016. (in Chinese). [4] 吴建军, 金永兴, 胡甚平, 等. 铝土矿海上运输安全风险研究综述[J]. 中国安全生产科学术, 2017, 13 (8): 87-95. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201708015.htmWU Jian-jun, JIN Yong-xing, HU Shen-ping, et al. Overview of safety risk research on marine transportation of bauxite[J]. Journal of Safety Science and Technology, 2017, 13 (8): 87-95. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201708015.htm [5] 高大川. 远洋镍矿运输安全分析[J]. 港口科技, 2017 (12): 44-48. doi: 10.3969/j.issn.1673-6826.2017.12.009GAO Da-chuan. Analysis on nickel ore's ocean transportation safety[J]. Science and Technology of Ports, 2017 (12): 44-48. (in Chinese). doi: 10.3969/j.issn.1673-6826.2017.12.009 [6] 周健, 朱耀民, 简琦薇, 等. 红土镍矿流态化特性的模型试验研究[J]. 岩土工程学报, 2014, 36 (8): 1515-1520. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201408021.htmZHOU Jian, ZHU Yao-min, JIAN Qi-wei, et al. Model tests on fluidization characteristics of laterite nickel ore in bulk[J]. Chinese Journal of Geotechnical Engineering, 2014, 36 (8): 1515-1520. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201408021.htm [7] 简琦薇, 李宁, 周健, 等. 基于模型试验的散装铁精矿流态化细观规律[J]. 同济大学学报(自然科学版), 2015, 43 (7): 1019-1024. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201507009.htmJIAN Qi-wei, LI Ning, ZHOU Jian, et al. Mesoscopic mechanism of fluidization for bulk iron ore concentrates based on model test[J]. Journal of Tongji University (Natural Science), 2015, 43 (7): 1019-1024. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201507009.htm [8] 周健, 朱耀民, 简琦薇, 等. 海运红土镍矿的动三轴试验研究[J]. 江苏科技大学学报(自然科学版), 2013, 27 (6): 523-527. https://www.cnki.com.cn/Article/CJFDTOTAL-HDCB201306003.htmZHOU Jian, ZHU Yao-min, JIAN Qi-wei, et al. Cyclic tri-axial test research of laterite nickel ore[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2013, 27 (6): 523-527. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HDCB201306003.htm [9] 邹友家, 沈淳, 奚祥英. 镍矿运输船沉没机理的数值模拟分析[J]. 船舶力学, 2015, 19 (8): 912-918. doi: 10.3969/j.issn.1007-7294.2015.08.004ZOU You-jia, SHEN Chun, XI Xiang-ying. Numerical simulations on the mechanisms of the capsizing of bulk nickel ore carrier[J]. Journal of Ship Mechanics, 2015, 19 (8): 912-918. (in Chinese). doi: 10.3969/j.issn.1007-7294.2015.08.004 [10] 张建伟. 易流态货物舱内晃荡对舱段运动及稳性影响的数值研究[D]. 大连: 大连海事大学, 2016.ZHANG Jian-wei. Numerical study of the effect of liquefiable cargo sloshing on motion and stability of a cargo hold section[D]. Dalian: Dalian Maritime University, 2016. (in Chinese). [11] ZHANG Jian-wei, WU Wan-qing, HU Jun-quan. A numerical study of the effects of the longitudinal baffle on nickel ore slurry sloshing in a prismatic cargo hold[J]. Marine Structures, 2016, 46 (3): 149-166. [12] ZHANG Jian-wei, WU Wan-qing, HU Jun-quan. Parametric studies on nickel ore slurry sloshing in a cargo hold by numerical simulations[J]. Ships and Offshore Structures, 2016, 12 (2): 209-218. [13] ZHANG Jian-wei, WU Wan-qing, HU Jun-quan. Study on the sloshing of nickel ore slurries with three different moisture contents[J]. Journal of Offshore Mechanics and Arctic Engineering, 2017, 139 (3): 1-7. [14] ZHANG Jian-wei, WU Wan-qing, HU Jun-quan. Study on the safety degree of ship capsizing in stochastic waves[J]. Journal of Ship Production and Design, 2017, 33 (1): 24-30. doi: 10.5957/jspd.2017.33.1.24 [15] SPANDONIDIS C C, SPYROU K J. Coupled vessel-dry-granular-cargo roll dynamics in regular beam seas[J]. Ocean Engineering, 2016, 120 (7): 238-245. [16] SPANDONIDIS C C, SPYROU K J. Micro-scale modeling of excited granular ship cargos: a numerical approach[J]. Ocean Engineering, 2013, 74 (4): 22-36. [17] 张杰. 灵便型散货船载运镍矿稳性研究[D]. 大连: 大连海事大学, 2016.ZHANG Jie. The research on the stability of handysize bulk carrier carrying nickel[D]. Dalian: Dalian Maritime University, 2016. (in Chinese). [18] 张楠. 风浪载荷对船载红土镍矿流态化的影响研究[D]. 大连: 大连海事大学, 2016.ZHANG Nan. Study on wave load of effects on shipping laterite nickel ore's liquefaction[D]. Dalian: Dalian Maritime University, 2016. (in Chinese). [19] 赵子豪. 货舱纵隔板对易流态货物舱内晃荡影响的数值研究[D]. 大连: 大连海事大学, 2018.ZHAO Zi-hao. Numerical study of the effect of longitudinal bulkhead on the liquefiable cargo sloshing in cargo hold[D]. Dalian: Dalian Maritime University, 2018. (in Chinese). [20] CAO Xue-yan, MING Fu-ren, ZHANG A-man. Sloshing in a rectangular tank based on SPH simulation[J]. Applied Ocean Research, 2014, 47 (8): 241-254. [21] 蔡文山, 高家镛, 张甫杰, 等. 液化镍矿砂晃荡与船舶运动的耦合影响[J]. 中国航海, 2014, 37 (3): 54-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201403013.htmCAI Wen-shan, GAO Jia-yong, ZHANG Fu-jie, et al. Coupling effects between sloshing of liquefied nickel ore and ship motion[J]. Navigation of China, 2014, 37 (3): 54-58. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201403013.htm [22] CHENG Xiao-nan, LIU Min-yan, HE Long-jun. Shipwreck statistical analysis and suggestions for ships carrying liquefiable solid bulk cargoes in China[J]. Procedia Engineering, 2014, 84 (10): 188-194. [23] WANG Hai-long, KOSEKI J, SATO T, et al. Effect of saturation on liquefaction resistance of iron ore fines and two sandy soils[J]. Soils and Foundations, 2016, 56 (4): 732-744. doi: 10.1016/j.sandf.2016.07.013 [24] MUNRO M, MOHAJERANI A. A review of the newly developed method used to prevent liquefaction of iron ore fines on bulk carriers[J]. Australian Geomechanics, 2016, 51 (1): 43-52. [25] KHANDELWAL V, DHIMAN A, BARANYI L, et al. Laminar flow of non-Newtonian shear-thinning fluids in a T-channel[J]. Computers and Fluids, 2015, 108: 79-91. doi: 10.1016/j.compfluid.2014.11.030 [26] LIU Dong-ming, LIN Peng-zhi. Three-dimensional liquid sloshing in a tank with baffles[J]. Ocean Engineering, 2009, 36 (2): 202-212. doi: 10.1016/j.oceaneng.2008.10.004 [27] 丁峻宏, 金允龙, 李根国, 等. 船载液化矿粉晃荡特性的数值仿真与实验研究[J]. 舰船科学技术, 2015, 37 (5): 36-41. doi: 10.3404/j.issn.1672-7649.2015.05.007DING Jun-hong, JIN Yun-long, LI Gen-guo, et al. Numerical simulation and experiment study of sloshing characteristics of shipborne liquefied ore powder[J]. Ship Science and Technology, 2015, 37 (5): 36-41. (in Chinese). doi: 10.3404/j.issn.1672-7649.2015.05.007 [28] 管陈, 董国祥, 高家镛, 等. 镍矿砂液化演变过程的摇摆台试验研究[J]. 水动力学研究与进展, 2014, 29 (6): 700-705. https://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ201406010.htmGUAN Chen, DONG Guo-xiang, GAO Jia-yong, et al. Plateform experiment and research of nickel ore liquefaction process[J]. Chinese Journal of Hydrodynamics, 2014, 29 (6): 700-705. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ201406010.htm