留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

集装箱码头作业系统层次化、并行、异构与可重构计算模型

李斌

李斌. 集装箱码头作业系统层次化、并行、异构与可重构计算模型[J]. 交通运输工程学报, 2019, 19(2): 136-155. doi: 10.19818/j.cnki.1671-1637.2019.02.013
引用本文: 李斌. 集装箱码头作业系统层次化、并行、异构与可重构计算模型[J]. 交通运输工程学报, 2019, 19(2): 136-155. doi: 10.19818/j.cnki.1671-1637.2019.02.013
LI Bin. Hierarchical, parallel, heterogeneous and reconfigurable computation model of container terminal handling system[J]. Journal of Traffic and Transportation Engineering, 2019, 19(2): 136-155. doi: 10.19818/j.cnki.1671-1637.2019.02.013
Citation: LI Bin. Hierarchical, parallel, heterogeneous and reconfigurable computation model of container terminal handling system[J]. Journal of Traffic and Transportation Engineering, 2019, 19(2): 136-155. doi: 10.19818/j.cnki.1671-1637.2019.02.013

集装箱码头作业系统层次化、并行、异构与可重构计算模型

doi: 10.19818/j.cnki.1671-1637.2019.02.013
基金项目: 

国家自然科学基金项目 71431001

教育部人文社会科学研究规划基金项目 19YJA630031

福建省自然科学基金项目 2017J01496

福建省高校新世纪优秀人才支持计划项目 GY-Z15107

福建工程学院科研发展基金项目 GY-Z160125

详细信息
    作者简介:

    李斌(1979-), 男, 湖北武汉人, 福建工程学院教授, 工学博士, 从事集装箱码头控制决策与运营优化研究

  • 中图分类号: U691.3

Hierarchical, parallel, heterogeneous and reconfigurable computation model of container terminal handling system

More Information
  • 摘要: 基于计算思维和计算透镜, 分析了集装箱码头的装卸作业与调度决策, 基于“并行计算”、“异构计算”和“可重构计算”提出了计算物流视角下的集装箱码头作业层次化、并行、异构与可重构计算模型; 将计算机科学领域中多种典型计算体系结构的设计思想和运作机制, 泛化、迁移、修正、融合和定制到集装箱码头作业系统中, 设计了面向此计算模型的混合调度策略, 提出了集装箱码头调度新的抽象计算模型与工程解决路径; 以某大型集装箱码头为实例, 基于集装箱码头作业层次化、并行、异构与可重构计算模型, 进行了物流广义计算自动化的设计与性能评估。研究结果表明: 采用计算模型能确定码头的集装箱吞吐量上限, 实例中约为码头年设计能力的2.75倍; 在满负荷情况下, 基于等待作业集装箱队列的负载均衡调度策略和基于等待作业船型的负载均衡调度策略均能将大型集装箱干线船舶物流广义计算任务延迟缩短约17 h; 在明显作业过载时, 前者能将物流广义计算任务延迟减少100~110 h, 后者能减少约120 h; 在满负荷和作业过载情况下, 2种策略均能缩短大型集装箱干线船舶物流广义计算访问存储时间1~2 h, 后者在作业过载情况下表现更佳; 2种策略都能很好地优先服务重点班轮集合, 且有各自对应的适用状况和调度重点, 码头管理者可根据具体情况选择适用。

     

  • 图  1  集装箱码头物流层次化、并行、异构与可重构计算模型

    Figure  1.  Hierarchical, parallel, heterogeneous and reconfigurable computation model of container terminal logistics

    图  2  集装箱码头物流广义计算异构可重构体系

    Figure  2.  Heterogeneous reconfigurable architecture of container terminal logistics generalized computation

    图  3  混合任务调度模型

    Figure  3.  Hybrid task scheduling model

    图  4  挂靠船舶负载系数为2.50时物流广义计算任务延迟对比

    Figure  4.  LGC-TL comparison when CVTLF is 2.50

    图  5  挂靠船舶负载系数为2.80时物流广义计算任务延迟对比

    Figure  5.  LGC-TL comparison when CVTLF is 2.80

    图  6  挂靠船舶负载系数为2.50时物流广义计算访问存储时间对比

    Figure  6.  LGC-MAT comparison when CVTLF is 2.50

    图  7  挂靠船舶负载系数为2.80时物流广义计算访问存储时间对比

    Figure  7.  LGC-MAT comparison when CVTLF is 2.80

    表  1  船舶关键属性

    Table  1.   Key attributes of ships

    船型类别 船舶设计载箱量/TEU 装卸箱量比例/% 挂靠船舶贡献比例/%
    小型支线喂给船舶Ⅰ 1 000~2 000 40~50 2
    小型支线喂给船舶Ⅱ 2 500~3 000 40~50 4
    巴拿马型船舶 3 500~4 499 30~45 5
    巴拿马极限型船舶 4 500~5 499 30~45 6
    超巴拿马型船舶Ⅰ 5 500~5 999 20~40 7
    超巴拿马型船舶Ⅱ 6 000~7 399 20~40 10
    超巴拿马型船舶Ⅲ 7 400~10 999 20~35 18
    超巴拿马型船舶Ⅳ 11 000~13 999 20~35 27
    超巴拿马型船舶Ⅴ 14 000~17 999 25~35 16
    超巴拿马型船舶Ⅵ 18 000~20 000 25~35 5
    下载: 导出CSV

    表  2  面向RTBBA的负载测试结果

    Table  2.   Load testing result for RTBBA

    组别 挂靠船舶负载系数 船舶平均通过能力/艘 通过能力标准偏差/艘 通过能力极差/艘 平均集装箱吞吐量/TEU 平均压船数量/艘 压船数量标准偏差/艘 平均压港集装箱数量/TEU
    1 1.50 3 348.76 18.379 80 15 139 038.20 7.92 2.080 40 223.16
    2 2.00 3 343.20 22.181 88 20 156 413.68 14.16 3.716 96 774.56
    3 2.25 3 340.32 23.079 95 22 585 771.12 21.28 5.054 153 467.96
    4 2.50 3 316.24 24.862 102 24 871 772.68 43.64 10.012 343 363.68
    5 2.75 3 210.28 16.964 73 26 549 145.68 150.60 21.197 1 257 674.68
    6 2.80 3 174.96 14.873 58 26 768 333.28 190.80 21.752 1 601 720.96
    7 2.85 3 137.28 13.554 57 26 881 444.64 225.32 20.020 1 938 734.40
    8 2.90 3 104.72 19.964 81 27 031 178.92 265.20 28.792 2 331 180.04
    9 2.95 3 058.52 17.854 80 27 134 463.60 304.04 25.414 2 713 169.12
    10 3.00 3 016.72 20.303 71 27 185 517.84 337.00 25.569 3 038 355.84
    下载: 导出CSV

    表  3  面向LB-PQV的负载测试结果

    Table  3.   Load testing result for LB-PQV

    组别 挂靠船舶负载系数 船舶平均通过能力/艘 通过能力标准偏差/艘 通过能力极差/艘 平均集装箱吞吐量/TEU 平均压船数量/艘 压船数量标准偏差/艘 平均压港集装箱数量/TEU
    1 1.50 3 355.16 24.741 82 15 153 385.28 9.28 2.011 44 414.68
    2 2.00 3 350.00 23.567 93 20 124 181.04 12.72 1.400 81 190.00
    3 2.25 3 350.52 19.524 78 22 674 155.28 13.80 2.236 99 567.12
    4 2.50 3 349.68 21.654 72 25 116 017.04 14.96 2.282 119 283.64
    5 2.75 3 289.12 20.296 79 27 169 987.00 69.72 28.267 585 335.56
    6 2.80 3 242.32 19.866 78 27 280 681.04 124.72 29.554 1 039 992.04
    7 2.85 3 183.28 15.079 54 27 309 830.60 174.40 27.162 1 485 155.64
    8 2.90 3 138.40 16.783 70 27 329 711.68 213.64 21.233 1 860 313.76
    9 2.95 3 091.08 21.670 78 27 372 028.24 264.12 28.323 2 370 285.76
    10 3.00 3 045.12 15.717 60 27 422 364.72 314.56 21.302 2 864 793.60
    下载: 导出CSV

    表  4  面向LB-PQC的负载测试结果

    Table  4.   Load testing result for LB-PQC

    组别 挂靠船舶负载系数 船舶平均通过能力/艘 通过能力标准偏差/艘 通过能力极差/艘 平均集装箱吞吐量/TEU 平均压船数量/艘 压船数量标准偏差/艘 平均压港集装箱数量/TEU
    1 1.50 3 355.60 19.328 87 15 136 272.92 5.20 1.323 27 786.12
    2 2.00 3 351.84 19.756 81 20 152 543.20 6.80 1.384 46 512.80
    3 2.25 3 353.88 21.985 82 22 656 647.48 7.72 1.487 60 667.80
    4 2.50 3 346.52 21.564 74 25 076 227.48 8.48 1.896 70 201.72
    5 2.75 3 337.32 26.663 88 27 617 794.08 32.84 32.367 278 322.08
    6 2.80 3 278.64 31.765 119 27 577 058.92 73.48 37.260 631 319.12
    7 2.85 3 216.88 26.210 122 27 525 031.84 140.00 33.953 1 208 887.40
    8 2.90 3 156.08 19.009 84 27 504 629.48 210.80 34.338 1 828 606.00
    9 2.95 3 111.72 19.280 70 27 531 409.88 247.04 20.709 2 199 425.00
    10 3.00 3 054.44 20.684 74 27 567 171.48 307.32 29.361 2 783 698.32
    下载: 导出CSV

    表  5  面向LB-PQS的负载测试结果

    Table  5.   Load testing result for LB-PQS

    组别 挂靠船舶负载系数 船舶平均通过能力/艘 通过能力标准偏差/艘 通过能力极差/艘 平均集装箱吞吐量/TEU 平均压船数量/艘 压船数量标准偏差/艘 平均压港集装箱数量/TEU
    1 1.50 3 352.12 16.481 75 15 104 631.04 5.40 1.384 28 852.92
    2 2.00 3 346.88 21.123 81 20 083 831.04 6.88 1.641 47 135.12
    3 2.25 3 349.12 19.743 73 22 671 001.92 7.52 1.851 58 858.28
    4 2.50 3 349.04 17.537 74 25 165 221.92 8.80 2.062 74 183.60
    5 2.75 3 331.12 27.216 86 27 588 971.48 32.28 25.851 276 136.52
    6 2.80 3 284.68 36.197 125 27 684 738.92 67.88 42.181 580 522.92
    7 2.85 3 216.88 26.210 122 27 525 031.84 140.00 33.953 1 208 887.40
    8 2.90 3 161.32 27.175 116 27 542 684.08 192.88 37.971 1 697 573.32
    9 2.95 3 101.40 19.706 72 27 539 590.96 257.92 26.607 2 317 713.56
    10 3.00 3 054.68 15.771 65 27 570 316.08 303.00 29.727 2 735 949.48
    下载: 导出CSV

    表  6  挂靠船舶负载系数为2.50时物流广义计算任务延迟关键指标

    Table  6.   LGC-TL key indicators when CVTLF is 2.50

    组别 挂靠船舶船型类别 调度策略 船舶数量/艘 LGC-TL平均值/h LGC-TL标准偏差/h LGC-TL最大值/h LGC-TL极差/h
    1 超巴拿马型船舶Ⅲ RTBBA 1 717 99.681 78.323 593.724 581.124
    2 超巴拿马型船舶Ⅳ RTBBA 2 623 99.203 74.117 561.779 545.922
    3 超巴拿马型船舶Ⅴ RTBBA 1 688 104.584 73.098 527.855 505.250
    4 超巴拿马型船舶Ⅵ RTBBA 515 120.718 80.488 508.938 479.396
    5 超巴拿马型船舶Ⅲ LB-PQV 1 777 38.318 11.285 86.327 72.853
    6 超巴拿马型船舶Ⅳ LB-PQV 2 699 42.276 11.283 84.906 68.897
    7 超巴拿马型船舶Ⅴ LB-PQV 1 536 47.320 10.788 94.895 73.141
    8 超巴拿马型船舶Ⅵ LB-PQV 519 54.707 10.894 83.245 53.792
    9 超巴拿马型船舶Ⅲ LB-PQC 1 850 21.176 5.372 48.094 35.535
    10 超巴拿马型船舶Ⅳ LB-PQC 2 675 24.822 5.442 61.929 46.399
    11 超巴拿马型船舶Ⅴ LB-PQC 1 548 30.606 5.612 58.636 37.483
    12 超巴拿马型船舶Ⅵ LB-PQC 511 37.514 5.499 61.500 32.320
    13 超巴拿马型船舶Ⅲ LB-PQS 1 782 21.094 5.107 60.868 48.762
    14 超巴拿马型船舶Ⅳ LB-PQS 2 745 24.830 5.610 58.362 43.018
    15 超巴拿马型船舶Ⅴ LB-PQS 1 651 30.300 5.268 60.259 38.854
    16 超巴拿马型船舶Ⅵ LB-PQS 483 37.742 5.567 67.443 38.386
    下载: 导出CSV

    表  7  挂靠船舶负载系数为2.80时物流广义计算任务延迟关键指标

    Table  7.   LGC-TL key indicators when CVTLF is 2.80

    组别 挂靠船舶船型类别 调度策略 船舶数量/艘 LGC-TL平均值/h LGC-TL标准偏差/h LGC-TL最大值/h LGC-TL极差/h
    1 超巴拿马型船舶Ⅲ RTBBA 1 793 281.534 215.855 1 098.416 1 082.694
    2 超巴拿马型船舶Ⅳ RTBBA 2 667 290.514 216.155 1 178.023 1 160.491
    3 超巴拿马型船舶Ⅴ RTBBA 1 625 291.480 218.265 1 154.331 1 127.570
    4 超巴拿马型船舶Ⅵ RTBBA 506 303.225 211.350 978.114 945.078
    5 超巴拿马型船舶Ⅲ LB-PQV 1 801 170.176 62.320 341.730 304.213
    6 超巴拿马型船舶Ⅳ LB-PQV 2 612 170.395 61.932 366.229 332.556
    7 超巴拿马型船舶Ⅴ LB-PQV 1 620 175.056 62.292 357.622 314.481
    8 超巴拿马型船舶Ⅵ LB-PQV 510 186.776 61.181 373.894 316.228
    9 超巴拿马型船舶Ⅲ LB-PQC 1 814 57.323 40.904 193.019 179.331
    10 超巴拿马型船舶Ⅳ LB-PQC 2 691 63.201 42.039 218.969 201.222
    11 超巴拿马型船舶Ⅴ LB-PQC 1 597 69.790 44.138 202.012 177.473
    12 超巴拿马型船舶Ⅵ LB-PQC 492 80.262 44.252 216.822 183.996
    13 超巴拿马型船舶Ⅲ LB-PQS 1 871 46.692 34.652 188.798 175.656
    14 超巴拿马型船舶Ⅳ LB-PQS 2 743 49.663 33.286 202.990 185.681
    15 超巴拿马型船舶Ⅴ LB-PQS 1 570 55.525 33.098 209.299 185.610
    16 超巴拿马型船舶Ⅵ LB-PQS 476 65.725 35.451 212.840 180.612
    下载: 导出CSV

    表  8  挂靠船舶负载系数为2.50时物流广义计算访问存储时间关键指标

    Table  8.   LGC-MAT key indicators when CVTLF is 2.50

    组别 挂靠船舶船型类别 调度策略 船舶数量/艘 LGC-MAT平均值/h LGC-MAT标准偏差/h LGC-MAT最大值/h LGC-MAT极差/h
    1 超巴拿马型船舶Ⅲ RTBBA 1 717 18.820 3.924 31.767 21.770
    2 超巴拿马型船舶Ⅳ RTBBA 2 623 22.110 3.945 33.928 20.707
    3 超巴拿马型船舶Ⅴ RTBBA 1 688 27.078 3.435 38.726 19.973
    4 超巴拿马型船舶Ⅵ RTBBA 515 33.606 3.786 42.443 16.833
    5 超巴拿马型船舶Ⅲ LB-PQV 1 777 18.979 3.796 32.613 22.005
    6 超巴拿马型船舶Ⅳ LB-PQV 2 699 22.103 3.881 38.135 24.985
    7 超巴拿马型船舶Ⅴ LB-PQV 1 536 27.289 3.450 38.169 19.827
    8 超巴拿马型船舶Ⅵ LB-PQV 519 33.836 3.824 42.309 16.318
    9 超巴拿马型船舶Ⅲ LB-PQC 1 850 17.003 3.429 26.950 17.266
    10 超巴拿马型船舶Ⅳ LB-PQC 2 675 20.396 3.644 32.180 19.504
    11 超巴拿马型船舶Ⅴ LB-PQC 1 548 25.688 3.320 35.140 16.676
    12 超巴拿马型船舶Ⅵ LB-PQC 511 32.231 3.473 42.644 17.096
    13 超巴拿马型船舶Ⅲ LB-PQS 1 782 17.180 3.438 29.177 19.521
    14 超巴拿马型船舶Ⅳ LB-PQS 2 745 20.378 3.571 30.501 17.822
    15 超巴拿马型船舶Ⅴ LB-PQS 1 651 25.787 3.450 34.862 16.738
    16 超巴拿马型船舶Ⅵ LB-PQS 483 32.590 3.359 42.397 17.059
    下载: 导出CSV

    表  9  挂靠船舶负载系数为2.80时物流广义计算访问存储时间关键指标

    Table  9.   LGC-MAT key indicators when CVTLF is 2.80

    组别 挂靠船舶船型类别 调度策略 船舶数量/艘 LGC-MAT平均值/h LGC-MAT标准偏差/h LGC-MAT最大值/h LGC-MAT极差/h
    1 超巴拿马型船舶Ⅲ RTBBA 1 793 22.430 4.435 37.875 25.676
    2 超巴拿马型船舶Ⅳ RTBBA 2 667 25.620 4.448 41.855 27.802
    3 超巴拿马型船舶Ⅴ RTBBA 1 625 31.142 3.821 42.994 20.472
    4 超巴拿马型船舶Ⅵ RTBBA 506 38.830 4.209 48.014 19.202
    5 超巴拿马型船舶Ⅲ LB-PQV 1 801 22.661 4.358 38.894 26.106
    6 超巴拿马型船舶Ⅳ LB-PQV 2 612 26.086 4.371 43.478 27.516
    7 超巴拿马型船舶Ⅴ LB-PQV 1 620 31.406 3.876 43.572 21.497
    8 超巴拿马型船舶Ⅵ LB-PQV 510 38.841 4.058 48.097 18.986
    9 超巴拿马型船舶Ⅲ LB-PQC 1 814 20.979 4.348 37.051 26.102
    10 超巴拿马型船舶Ⅳ LB-PQC 2 691 24.540 4.391 41.507 26.907
    11 超巴拿马型船舶Ⅴ LB-PQC 1 597 30.256 3.831 43.020 22.388
    12 超巴拿马型船舶Ⅵ LB-PQC 492 37.942 4.051 47.695 18.838
    13 超巴拿马型船舶Ⅲ LB-PQS 1 871 20.632 4.254 36.880 26.093
    14 超巴拿马型船舶Ⅳ LB-PQS 2 743 24.292 4.394 38.823 24.245
    15 超巴拿马型船舶Ⅴ LB-PQS 1 570 29.946 3.810 42.520 21.648
    16 超巴拿马型船舶Ⅵ LB-PQS 476 37.709 4.242 49.301 20.486
    下载: 导出CSV

    表  10  不同调度策略服务船舶数量对比

    Table  10.   Comparison of surved ship numbers under different scheduling policies

    调度策略 挂靠船舶负载系数 STG-I服务船舶数量/艘 STG-Ⅱ服务船舶数量/艘 STG-Ⅲ服务船舶数量/艘 超巴拿马型船舶Ⅵ数量/艘
    RTBBA 2.50 6 543 6 028 4 340 515
    LB-PQV 2.50 6 531 6 012 4 476 519
    LB-PQC 2.50 6 584 6 073 4 525 511
    LB-PQS 2.50 6 661 6 178 4 527 483
    RTBBA 2.80 6 591 6 085 4 460 506
    LB-PQV 2.80 6 543 6 033 4 413 510
    LB-PQC 2.80 6 594 6 102 4 505 492
    LB-PQS 2.80 6 660 6 184 4 614 476
    下载: 导出CSV
  • [1] LEE Chung-yee, SONG Dong-ping. Ocean container transport in global supply chains: overview and research opportunities[J]. Transportation Research Part B: Methodological, 2017, 95: 442-474. doi: 10.1016/j.trb.2016.05.001
    [2] CRAINIC T G, PERBOLI G, ROSANO M. Simulation of intermodal freight transportation systems: a taxonomy[J]. European Journal of Operational Research, 2018, 270 (2): 401-408. doi: 10.1016/j.ejor.2017.11.061
    [3] WANG Ping, MILESKI J, ZENG Qing-cheng. Toward a taxonomy of container terminals' practices and performance: a contingency and configuration study[J]. Transportation Research Part A: Policy and Practice, 2019, 121: 92-107. doi: 10.1016/j.tra.2019.01.005
    [4] 刘兵兵, 孙李波, 余玉刚. 仓储、物流与供应链管理研究新进展[J]. 中国科学技术大学学报, 2017, 47 (2): 176-187. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJD201702008.htm

    LIU Bing-bing, SUN Li-bo, YU Yu-gang. Recent advances on researches of warehousing, logistics and supply chain management[J]. Journal of University of Science and Technology of China, 2017, 47 (2): 176-187. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJD201702008.htm
    [5] 王帆, 黄锦佳, 刘作仪. 港口管理与运营: 新兴研究热点及其进展[J]. 管理科学学报, 2017, 20 (5): 111-126. doi: 10.3969/j.issn.1007-9807.2017.05.009

    WANG Fan, HUANG Jin-jia, LIU Zuo-yi. Port management and operations: emerging research topics and progress[J]. Journal of Management Sciences in China, 2017, 20 (5): 111-126. (in Chinese). doi: 10.3969/j.issn.1007-9807.2017.05.009
    [6] LEHNFELD J, KNUST S. Loading, unloading and premarshalling of stacks in storage areas: survey and classification[J]. European Journal of Operational Research, 2014, 239 (2): 297-312. doi: 10.1016/j.ejor.2014.03.011
    [7] BIERWIRTH C, MEISEL F. A follow-up survey of berth allocation and quay crane scheduling problems in container terminals[J]. European Journal of Operational Research, 2015, 244 (3): 675-689. doi: 10.1016/j.ejor.2014.12.030
    [8] CARLO H J, VIS I F A, ROODBERGEN K J. Storage yard operations in container terminals: literature overview, trends, and research directions[J]. European Journal of Operational Research, 2014, 235 (2): 412-430. doi: 10.1016/j.ejor.2013.10.054
    [9] CARLO H J, VIS I F A, ROODBERGEN K J. Transport operations in container terminals: literature overview, trends, research directions and classification scheme[J]. European Journal of Operational Research, 2014, 236 (1): 1-13. doi: 10.1016/j.ejor.2013.11.023
    [10] 陈江涛, 吕建秋. 基于知识图谱的运筹学发展现状及趋势研究[J]. 运筹与管理, 2019, 28 (1): 194-199. https://www.cnki.com.cn/Article/CJFDTOTAL-YCGL201901024.htm

    CHEN Jiang-tao, LYU Jian-qiu. Research on the present situation and tendency of operational research based on knowledge map[J]. Operations Research and Management Science, 2019, 28 (1): 194-199. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YCGL201901024.htm
    [11] ZHANG Zi-zhen, LEE Chung-yee. Multiobjective approaches for the ship stowage planning problem considering ship stability and container rehandles[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2016, 46 (10): 1374-1389. doi: 10.1109/TSMC.2015.2504104
    [12] URSAVAS E, ZHU S X. Optimal policies for the berth allocation problem under stochastic nature[J]. European Journal of Operational Research, 2016, 255 (2): 380-387. doi: 10.1016/j.ejor.2016.04.029
    [13] LIU Ding, GE Ying-en. Modeling assignment of quay cranes using queueing theory for minimizing CO2 emission at a container terminal[J]. Transportation Research Part D: Transport and Environment, 2018, 61: 140-151. doi: 10.1016/j.trd.2017.06.006
    [14] CHEN Jiang-hang, BIERLAIRE M. The study of the unidirectional quay crane scheduling problem: complexity and risk-aversion[J]. European Journal of Operational Research, 2017, 260 (2): 613-624. doi: 10.1016/j.ejor.2017.01.007
    [15] 梁承姬, 严亚平, 李玲君. 双40英尺岸桥的集卡调度问题研究[J]. 铁道科学与工程学报, 2018, 15 (2): 522-529. doi: 10.3969/j.issn.1672-7029.2018.02.033

    LIANG Cheng-ji, YAN Ya-ping, LI Ling-jun. Research of vehicle scheduling for dual 40' quay crane[J]. Journal of Railway Science and Engineering, 2018, 15 (2): 522-529. (in Chinese). doi: 10.3969/j.issn.1672-7029.2018.02.033
    [16] 赵金楼, 黄金虎, 刘馨, 等. 考虑燃料成本的集装箱码头集卡路径优化[J]. 哈尔滨工程大学学报, 2017, 38 (12): 1985-1990. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201712025.htm

    ZHAO Jin-lou, HUANG Jin-hu, LIU Xin, et al. Optimization for routing yard trailers in container terminals by considering fuel cost[J]. Journal of Harbin Engineering University, 2017, 38 (12): 1985-1990. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201712025.htm
    [17] 邵乾虔, 徐婷婷, 杨惠云, 等. 集卡分批到达模式下的进口箱场桥作业调度优化[J]. 控制与决策, 2016, 31 (9): 1654-1662. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201609018.htm

    SHAO Qian-qian, XU Ting-ting, YANG Hui-yun, et al. Scheduling optimization of yard crane for import containers based on truck batch arrival pattern[J]. Control and Decision, 2016, 31 (9): 1654-1662. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201609018.htm
    [18] ZHEN Lu, XU Zhou, WANG Kai, et al. Multi-period yard template planning in container terminals[J]. Transportation Research Part B: Methodological, 2016, 93: 700-719. doi: 10.1016/j.trb.2015.12.006
    [19] DA SILVA M D M, ERDOAN G, BATTARRA M, et al. The block retrieval problem[J]. European Journal of Operational Research, 2018, 265 (3): 931-950. doi: 10.1016/j.ejor.2017.08.048
    [20] DA SILVA M D M, TOULOUSE S, CALVO R W. A new effective unified model for solving the pre-marshalling and block relocation problems[J]. European Journal of Operational Research, 2018, 271 (1): 40-56. doi: 10.1016/j.ejor.2018.05.004
    [21] TAO Yi, LEE Chung-yee. Joint planning of berth and yard allocation in transshipment terminals using multi-cluster stacking strategy[J]. Transportation Research Part E: Logistics and Transportation Review, 2015, 83: 34-50. doi: 10.1016/j.tre.2015.08.005
    [22] LIN Dung-ying, LEE Yen-ju, LEE Yu-sin. The container retrieval problem with respect to relocation[J]. Transportation Research Part C: Emerging Technologies, 2015, 52: 132-143. doi: 10.1016/j.trc.2015.01.024
    [23] HU Zhi-hua. Heuristics for solving continuous berth allocation problem considering periodic balancing utilization of cranes[J]. Computers and Industrial Engineering, 2015, 85: 216-226. doi: 10.1016/j.cie.2015.03.017
    [24] JI Ming-jun, GUO Wen-wen, ZHU Hui-ling, et al. Optimization of loading sequence and rehandling strategy for multi-quay crane operations in container terminals[J]. Transportation Research Part E: Logistics and Transportation Review, 2015, 80: 1-19. doi: 10.1016/j.tre.2015.05.004
    [25] NIU Ben, XIE Ting, TAN Li-jing, et al. Swarm intelligence algorithms for yard truck scheduling and storage allocation problems[J]. Neurocomputing, 2016, 188 (5): 284-293.
    [26] TAN Cai-mao, HE Jun-liang, WANG Yu. Storage yard management based on flexible yard template in container terminal[J]. Advanced Engineering Informatics, 2017, 34: 101-113. doi: 10.1016/j.aei.2017.10.003
    [27] GALLE V, BARNHART C, JAILLET P. Yard crane scheduling for container storage, retrieval, and relocation[J]. European Journal of Operational Research, 2018, 271 (1): 288-316.
    [28] IRIS Ç, LAM J S L. Recoverable robustness in weekly berth and quay crane planning[J]. Transportation Research Part B: Methodological, 2019, 122: 365-389. doi: 10.1016/j.trb.2019.02.013
    [29] VAHDANI B, MANSOUR F, SOLTANI M, et al. Bi-objective optimization for integrating quay crane and internal truck assignment with challenges of trucks sharing[J]. Knowledge-Based Systems, 2019, 163: 275-293.
    [30] 韩笑乐, 鞠留红, 钱丽娜, 等. 集装箱进出口码头泊位-堆场协同分配的动态决策[J]. 上海交通大学学报, 2019, 53 (1): 69-76. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201901011.htm

    HAN Xiao-le, JU Liu-hong, QIAN Li-na, et al. Dynamic decision making for the integrated allocation of berth and yard resource at import/export container terminals[J]. Journal of Shanghai Jiaotong University, 2019, 53 (1): 69-76. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201901011.htm
    [31] 曾庆成, 陈子根, 黄玲. 集装箱码头同贝同步装卸调度的多阶段混合流水线模型[J]. 上海交通大学学报, 2015, 49 (4): 499-505. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201504015.htm

    ZENG Qing-cheng, CHEN Zi-gen, HUANG Ling. Multi-stage hybrid flow shop model for quay crane dual cycling in container terminals[J]. Journal of Shanghai Jiaotong University, 2015, 49 (4): 499-505. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201504015.htm
    [32] 秦天保, 葛浩, 沙梅. 约束规划求解集装箱装卸系统集成调度问题[J]. 系统工程理论与实践, 2015, 35 (8): 2127-2136. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201508023.htm

    QIAN Tian-bao, GE Hao, SHA Mei. Constraint programming for the integrated scheduling problem of container handling systems in container terminals[J]. Systems Engineering—Theory and Practice, 2015, 35 (8): 2127-2136. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201508023.htm
    [33] 常祎妹, 朱晓宁, 王力. 集装箱码头集成调度研究综述[J]. 交通运输工程学报, 2019, 19 (1): 136-146. http://transport.chd.edu.cn/article/id/201901014

    CHANG Yi-mei, ZHU Xiao-ning, WANG Li. Review on integrated scheduling of container terminals[J]. Journal of Traffic and Transportation Engineering, 2019, 19 (1): 136-146. (in Chinese). http://transport.chd.edu.cn/article/id/201901014
    [34] LÓPEZ-BERMÚDEZ B, FREIRE-SEOANE M J, GONZÁLEZLAXE F. Efficiency and productivity of container terminals in Brazilian ports (2008-2017)[J]. Utilities Policy, 2019, 56: 82-91.
    [35] FENG Hong-xiang, GRIFOLL M, ZHENG Peng-jun. From a feeder port to a hub port: the evolution pathways, dynamics and perspectives of Ningbo-Zhoushan Port (China)[J]. Transport Policy, 2019, 76: 21-35.
    [36] 鲁渤, 汪寿阳. 中韩集装箱码头运营效率的比较研究[J]. 管理评论, 2017, 29 (5): 175-182. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWGD201705016.htm

    LU Bo, WANG Shou-yang. A comparative study of the container terminal operating efficiency between China and South Korea[J]. Management Review, 2017, 29 (5): 175-182. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZWGD201705016.htm
    [37] LI Bin, LI Wen-feng. Modeling and simulation of container terminal logistics systems using Harvard architecture and agent-based computing[C]//IEEE. Proceedings of the 2010 Winter Simulation Conference. New York: IEEE, 2010: 3396-3410.
    [38] LI Bin. Container terminal logistics scheduling and decision-making within the conceptual framework of computational thinking[C]//IEEE. 54th IEEE Conference on Decision and Control. New York: IEEE, 2015: 330-337.
    [39] 李斌. 面向计算思维的集装箱码头装卸作业调度[J]. 交通运输系统工程与信息, 2016, 16 (3): 161-167. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201603024.htm

    LI Bin. Container terminal loading and unloading task scheduling based on computational thinking[J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 16 (3): 161-167. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201603024.htm
    [40] 李斌. 基于计算物流的集装箱码头集疏运虚拟机体系结构及其仿真分析[J]. 计算机集成制造系统, 2018, 24 (1): 245-263. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ201801024.htm

    LI Bin. Collection and distribution virtual machines architecture of container terminal based on computational logistics and its simulation analysis[J]. Computer Integrated Manufacturing Systems, 2018, 24 (1): 245-263. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ201801024.htm
    [41] LI Bin, WAN Yun-fei, SUN Bing. Container terminal logistics computation performance evaluation with great principles of computing and case study[C]∥IEEE. Proceedings of the 2018 Chinese Automation Congress (CAC 2018). New York: IEEE, 2018: 934-939.
    [42] 袁良, 张云泉. 基于横向局部性的多核计算模型[J]. 计算机科学, 2012, 39 (7): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201207001.htm

    YUAN Liang, ZHANG Yun-quan. Multi-core parallel computational model based on horizontal locality[J]. Computer Science, 2012, 39 (7): 1-6. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201207001.htm
    [43] 王欢, 都志辉. 并行计算模型对比分析[J]. 计算机科学, 2005, 32 (12): 142-145. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA200512037.htm

    WANG Huan, DU Zhi-hui. Contrastive analysis of parallel computation model[J]. Computer Science, 2005, 32 (12): 142-145. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA200512037.htm
    [44] 李斌. 基于哈佛体系结构的集装箱码头物流系统建模仿真研究[D]. 武汉: 武汉理工大学, 2009.

    LI Bin. Modeling and simulation of container terminal logistics system based on Harvard architecture[D]. Wuhan: Wuhan University of Technology, 2009. (in Chinese).
    [45] CARLO H J, VIS I F A, ROODBERGEN K J. Seaside operations in container terminals: literature overview, trends, and research directions[J]. Flexible Services and Manufacturing Journal, 2015, 27 (2/3): 224-262.
    [46] KAVESHGAR N, HUYNH N. Integrated quay crane and yard truck scheduling for unloading inbound containers[J]. International Journal of Production Economics, 2015, 159: 168-177.
    [47] HWANG F J, LIN B M T. Two-stage flexible flow shop scheduling subject to fixed job sequences[J]. Journal of the Operational Research Society, 2016, 67 (3): 506-515.
    [48] 张煜, 容芷君, 马杰. 含批处理机和多工件族的混合流水车间问题[J]. 计算机集成制造系统, 2014, 20 (2): 407-413. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ201402022.htm

    ZHANG Yu, RONG Zhi-jun, MA Jie. Hybrid flow shop problem with batching machines and multi-jobs families[J]. Computer Integrated Manufacturing Systems, 2014, 20 (2): 407-413. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ201402022.htm
    [49] 杨宜佳, 朱晓宁, 闫柏丞, 等. 考虑能耗的铁水联运集装箱装卸设备协同调度[J]. 交通运输系统工程与信息, 2018, 18 (6): 215-221. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201806030.htm

    YANG Yi-jia, ZHU Xiao-ning, YAN Bai-cheng, et al. Integrated scheduling of rail-water containers handling operations in intermodal terminals considering energy-efficiency[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18 (6): 215-221. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201806030.htm
    [50] 李斌. 面向PID控制和仿真优化的集装箱码头作业调度[J]. 计算机集成制造系统, 2016, 22 (3): 833-845. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ201603028.htm

    LI Bin. Container terminal task scheduling oriented to PID control and simulation optimization[J]. Computer Integrated Manufacturing Systems, 2016, 22 (3): 833-845. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ201603028.htm
  • 加载中
图(7) / 表(10)
计量
  • 文章访问数:  810
  • HTML全文浏览量:  141
  • PDF下载量:  327
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-25
  • 刊出日期:  2019-04-25

目录

    /

    返回文章
    返回