留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地铁应急救援车辆配置绩效评估模型

张勇 伏紫妍

张勇, 伏紫妍. 地铁应急救援车辆配置绩效评估模型[J]. 交通运输工程学报, 2019, 19(2): 156-166. doi: 10.19818/j.cnki.1671-1637.2019.02.014
引用本文: 张勇, 伏紫妍. 地铁应急救援车辆配置绩效评估模型[J]. 交通运输工程学报, 2019, 19(2): 156-166. doi: 10.19818/j.cnki.1671-1637.2019.02.014
ZHANG Yong, FU Zi-yan. Evaluating model of deployment performance of metro emergency rescue vehicles[J]. Journal of Traffic and Transportation Engineering, 2019, 19(2): 156-166. doi: 10.19818/j.cnki.1671-1637.2019.02.014
Citation: ZHANG Yong, FU Zi-yan. Evaluating model of deployment performance of metro emergency rescue vehicles[J]. Journal of Traffic and Transportation Engineering, 2019, 19(2): 156-166. doi: 10.19818/j.cnki.1671-1637.2019.02.014

地铁应急救援车辆配置绩效评估模型

doi: 10.19818/j.cnki.1671-1637.2019.02.014
基金项目: 

国家自然科学基金项目 51778386

国家社科基金重大项目 13 & ZD175

详细信息
    作者简介:

    张勇(1978-), 男, 江苏如东人, 苏州大学副教授, 工学博士, 从事交通可靠性及紧急救援研究

    通讯作者:

    伏紫妍(1993-), 女, 江苏扬州人, 苏州工业园区测绘地理信息有限公司工程师

  • 中图分类号: U298.6

Evaluating model of deployment performance of metro emergency rescue vehicles

More Information
  • 摘要: 分析了地铁应急救援车辆对地铁灾害事故实施救援的排队过程, 定义了救援车辆响应地铁灾害事故的状态空间, 基于随机生灭过程理论建立了救援车辆的联合排队模型, 得到救援状态平衡方程; 为了减小平衡方程求解的运算量与存储空间, 提出了基于稀疏矩阵压缩的联合排队状态概率改进求解算法, 给出了包括救援响应时间、救援车辆工作强度、跨区救援概率等地铁救援系统各项绩效评价指标计算方法; 为了验证模型与求解算法, 以实际的地铁线网为例, 研究了路轨两用救援车、履带式救援车和便携式救援车的性能指标。计算结果表明: 算法迭代7次以后, 收敛精度数量级达到了10-8; 路轨两用救援车、履带式救援车和便携式救援车的平均响应时间分别约为14、20、10 min; 路轨两用救援车、履带式救援车跨区救援概率分别约为0.85、0.75, 便携式救援车跨区救援概率数量级为10-5; 在各小区接收外部救援车方面, 路轨两用救援车和履带式救援车跨区救援概率约为0.7, 而便携式救援车跨区救援概率的数量级约为10-6; 在救援强度的均衡性方面, 路轨两用救援车、履带式救援车和便携式救援车依次降低。

     

  • 图  1  路轨两用救援车分布

    Figure  1.  Deployment of road-rail rescue vehicles

    图  2  应急救援车辆空间分布

    Figure  2.  Deployment of emergency rescue vehicles

    图  3  三辆救援车辆的救援状态转移

    Figure  3.  Transitions between rescue states of 3 rescue vehicles

    图  4  算法流程

    Figure  4.  Algorithm flow

    图  5  地铁线网与救援小区

    Figure  5.  Railway network and rescue zones

    图  6  状态概率精度迭代收敛曲线

    Figure  6.  Iterative convergence curve of state probability precision

    图  7  救援车辆平均响应时间

    Figure  7.  Mean response times of rescue vehicles

    图  8  救援车辆工作强度

    Figure  8.  Workloads of rescue vehicles

    图  9  路轨两用救援车与履带式救援车跨小区救援概率

    Figure  9.  Cross-district rescue probabilities of road-rail rescue vehicles and crawler rescue vehicles

    图  10  便携式救援车跨小区救援概率

    Figure  10.  Cross-district rescue probabilities of portable rescue vehicles

    图  11  各小区利用路轨两用救援车与履带式救援车获得救援的概率

    Figure  11.  Rescue probabilities of each zone obtained by using road-rail rescue vehicles and crawler rescue vehicles

    图  12  各小区利用便携式救援车获得救援的概率

    Figure  12.  Rescue probability of each zone obtained by using portable rescue vehicles

    表  1  救援车辆配置

    Table  1.   Deployment of rescue vehicles veh

    线路 小区 车型数量
    路轨两用救援车 履带式救援车 便携式救援车
    1号线 1 0 2 1
    2 0 0 2
    3 0 0 3
    4 0 0 2
    5 1 2 2
    5号线 6 0 2 2
    7 0 0 2
    8 0 0 3
    9 0 0 2
    10 1 2 1
    下载: 导出CSV

    表  2  2007~2014年北京市地铁救援次数与时间

    Table  2.   Railway rescue times and time of Beijing during 2007-2014

    年份 每年救援次数 平均救援时间/min
    1号线 5号线
    2007 2 2 23.0
    2008 2 1 24.7
    2009 2 1 47.5
    2010 2 1 30.0
    2011 3 0 16.3
    2012 2 0 18.8
    2013 0 2 20.0
    2014 5 2 13.8
    下载: 导出CSV

    表  3  路轨两用救援车和履带式救援车在小区间的行程时间

    Table  3.   Travel times of road-rail rescue vehicles and crawler rescue vehicles between zones h

    小区 1 2 3 4 5 6 7 8 9 10
    1 0.08 0.18 0.34 0.48 0.61 0.99 1.14 1.29 1.14 1.02
    2 0.18 0.10 0.17 0.30 0.44 0.99 1.14 1.46 1.31 1.20
    3 0.34 0.17 0.07 0.14 0.27 0.82 0.97 1.27 1.24 1.13
    4 0.48 0.30 0.14 0.06 0.13 0.69 0.84 1.13 1.11 1.00
    5 0.61 0.44 0.27 0.13 0.07 0.55 0.70 1.00 0.98 0.86
    6 0.99 0.99 0.82 0.69 0.55 0.08 0.15 0.23 0.45 0.56
    7 1.14 1.14 0.97 0.84 0.70 0.15 0.07 0.15 0.30 0.41
    8 1.29 1.46 1.27 1.13 1.00 0.23 0.15 0.08 0.15 0.19
    9 1.14 1.31 1.24 1.11 0.98 0.45 0.30 0.15 0.07 0.11
    10 1.02 1.20 1.13 1.00 0.86 0.56 0.41 0.19 0.11 0.04
    下载: 导出CSV

    表  4  便携式救援车在小区间的行程时间

    Table  4.   Travel times of portable rescue vehicles between zones h

    小区 1 2 3 4 5 6 7 8 9 10
    1 0.19 0.44 0.86 1.19 1.53 0.99 1.14 1.29 1.14 1.02
    2 0.44 0.24 0.42 0.76 1.09 0.99 1.14 1.46 1.31 1.20
    3 0.86 0.42 0.18 0.34 0.67 0.82 0.97 1.27 1.24 1.13
    4 1.19 0.76 0.34 0.16 0.33 0.69 0.84 1.13 1.11 1.00
    5 1.53 1.09 0.67 0.33 0.18 0.55 0.70 1.00 0.98 0.86
    6 0.99 0.99 0.82 0.69 0.55 0.21 0.38 0.58 1.12 1.40
    7 1.14 1.14 0.97 0.84 0.70 0.38 0.17 0.37 0.74 1.03
    8 1.29 1.46 1.27 1.13 1.00 0.58 0.37 0.20 0.38 0.48
    9 1.14 1.31 1.24 1.11 0.98 1.12 0.74 0.38 0.18 0.28
    10 1.02 1.20 1.13 1.00 0.86 1.40 1.03 0.48 0.28 0.11
    下载: 导出CSV
  • [1] OKUMURA T, SUZUKI K, FUKUDA A, et al. The Tokyo subway sarin attack: disaster management, Part 1: community emergency response[J]. Academic Emergency Medicine, 1998, 5 (6): 613-617. doi: 10.1111/j.1553-2712.1998.tb02470.x
    [2] OKUMURA T, SUZUKI K, FUKUDA A, et al. The Tokyo subway sarin attack: disaster management, Part 2: hospital response[J]. Academic Emergency Medicine, 1998, 5 (6): 618-624. doi: 10.1111/j.1553-2712.1998.tb02471.x
    [3] CHOI N. Narrative analysis on survivor's experience of Daegu subway fire disaster—the hypothetical suggestions for disaster nursing practice[J]. Journal of Korean Academy of Nursing, 2005, 35 (2): 407-418. doi: 10.4040/jkan.2005.35.2.407
    [4] ZHONG Mao-hua, SHI Cong-ling, TU Xu-wei, et al. Study of the human evacuation simulation of metro fire safety analysis in China[J]. Journal of Loss Prevention in the Process Industries, 2008, 21 (3): 287-298. doi: 10.1016/j.jlp.2007.08.001
    [5] CHEN Fa-lin, GUO Shin-chang, CHUAY He-yuan, et al. Smoke control of fires in subway stations[J]. Theoretical and Computational Fluid Dynamics, 2003, 16: 349-368. doi: 10.1007/s00162-002-0086-5
    [6] GAO Ran, LI An-gui, HAO Xin-peng, et al. Fire-induced smoke control via hybrid ventilation in a huge transit terminal subway station[J]. Energy and Buildings, 2012, 45: 280-289. doi: 10.1016/j.enbuild.2011.11.018
    [7] ROH J S, RYOU H S, YOON S W. The effect of PSD on life safety in subway station fire[J]. Journal of Mechanical Science and Technology, 2010, 24 (4): 937-942. doi: 10.1007/s12206-010-0217-7
    [8] MENG Na, HU Long-hua, WU Long, et al. Numerical study on the optimization of smoke ventilation mode at the conjunction area between tunnel track and platform in emergency of a train fire at subway station[J]. Tunnelling and Underground Space Technology, 2014, 40: 151-159. doi: 10.1016/j.tust.2013.09.014
    [9] YOON S H, LEE M J, YEE J J. An experimental study on evacuation times in a subway station using evacuation parameters[J]. Journal of Asian Architecture and Building Engineering, 2013, 12 (1): 93-100. doi: 10.3130/jaabe.12.93
    [10] JEON G, HONG W. Characteristic features of the behavior and perception of evacuees from the Daegu subway fire and safety measures in an underground fire[J]. Journal of Asian Architecture and Building Engineering, 2009, 8 (2): 415-422. doi: 10.3130/jaabe.8.415
    [11] QU L, CHOW W. Platform screen doors on emergency evacuation in underground railway stations[J]. Tunnelling and Underground Space Technology, 2012, 30: 1-9. doi: 10.1016/j.tust.2011.09.003
    [12] WAN Jia-hui, SUI Jie, YU Hua. Research on evacuation in the subway station in China based on the combined social force model[J]. Physica A: Statistical Mechanics and its Applications, 2014, 394: 33-46. doi: 10.1016/j.physa.2013.09.060
    [13] ZHAO Hai-feng, JIANG Jie, XU Rong-yu, et al. SIRS model of passengers' panic propagation under self-organization circumstance in the subway emergency[J]. Mathematical Problems in Engineering, 2014, 2014: 1-12.
    [14] SHVETSOV A, SHVETSOVA S, KOZYREV V A, et al. The "car-bomb" as a terrorist tool at metro stations, railway terminals and airports[J]. Journal of Transportation Security, 2017, 10 (1/2): 31-43.
    [15] SHVETSOV A V, SHAROV V A, KOZYREV V A, et al. Trends of modern terrorism in the metro systems of the world[J]. European Journal for Security Research, 2018, 6 (3): 1-8.
    [16] HAKIMI S L. Optimum locations of switching centers and the absolute centers and medians of a graph[J]. Operations Research, 1964, 12 (3): 450-459. doi: 10.1287/opre.12.3.450
    [17] CALVO A B, MARKS D H. Location of health care facilities: an analytical approach[J]. Socio-Economic Planning Sciences, 1973, 7: 407-422. doi: 10.1016/0038-0121(73)90039-6
    [18] CARBONE R. Public facility location under stochastic demand[J]. INFOR Journal, 1974, 12 (3): 261-270.
    [19] CARSON Y M, BATTA R. Locating an ambulance on the Amherst Campus of the State University of New York at Buffalo[J]. Interfaces, 1990, 20 (5): 43-49. doi: 10.1287/inte.20.5.43
    [20] SNYDER L V. Facility Location under uncertainty: a review[J]. IIE Transactions, 2006, 38: 537-554. doi: 10.1080/074081791009022
    [21] DASKIN M S. A maximum expected covering location model: formulation, properties and heuristic solution[J]. Transportation Science, 1983, 17 (1): 48-70. doi: 10.1287/trsc.17.1.48
    [22] HOGAN K, REVELLE C. Concepts and applications of backup coverage[J]. Management Science, 1986, 32 (11): 1434-1444. doi: 10.1287/mnsc.32.11.1434
    [23] REPEDE J F, BERNARDO J J. Developing and validating a decision support system for locating emergency medical vehicles in Louisville, Kentucky[J]. European Journal of Operational Research, 1994, 75: 567-581. doi: 10.1016/0377-2217(94)90297-6
    [24] GOLDBERG J B. Operations research models for the deployment of emergency services vehicles[J]. EMS Management Journal, 2004, 1 (1): 20-39.
    [25] 吴艳华, 王富章, 李芳. 铁路救援基地层级规划选址模型[J]. 交通运输工程学报, 2013, 13 (3): 86-93. http://transport.chd.edu.cn/article/id/201303012

    WU Yan-hua, WANG Fu-zhang, LI Fang. Hierarchical planning location model of railway rescue center[J]. Journal of Traffic and Transportation Engineering, 2013, 13 (3): 86-93. (in Chinese). http://transport.chd.edu.cn/article/id/201303012
    [26] ARINGHIERI R, BRUNI M E, KHODAPARASTI S, et al. Emergency medical services and beyond: addressing new challenges through a wide literature review[J]. Computers and Operations Research, 2017, 78: 349-368. doi: 10.1016/j.cor.2016.09.016
    [27] BÉLANGER V, RUIZ A, SORIANO P. Recent optimization models and trends in location, relocation, and dispatching of emergency medical vehicles[J]. European Journal of Operational Research, 2019, 272 (1): 1-23.
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  735
  • HTML全文浏览量:  119
  • PDF下载量:  364
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-05
  • 刊出日期:  2019-04-25

目录

    /

    返回文章
    返回