-
摘要: 通过建模软件Solidworks对沥青发生装置进行三维建模, 采用有限元仿真软件Fluent分析了不同参数条件下基质沥青的发泡过程, 并对比了试验结果和仿真结果, 分析了应用有限元仿真技术研究基质沥青发泡膨胀率的可靠性; 对发泡腔和发泡腔内各流体材料进行有限元仿真, 利用Fluent中的后处理功能得到了发泡腔的温度、速度、压力和各相的分布云图。仿真结果表明: 在整个发泡过程中, 基质沥青温度的增大使沥青黏度下降, 发泡腔内水蒸汽增加, 当基质沥青温度从120℃升高到160℃时, 基质沥青的发泡膨胀率从4增大到11, 说明基质沥青温度的变化对其发泡膨胀率的影响很大; 基质沥青流量的增大起到增加发泡腔内基质沥青总量和减少基质沥青之间相互接触时间和接触面积的作用, 当基质沥青入口流量从60 g·s-1增大到120 g·s-1时, 基质沥青的发泡膨胀率为7~11, 表明基质沥青流量的变化对其发泡膨胀率的影响很大; 当用水量从2.0%增大到3.5%时, 基质沥青的发泡膨胀率基本不变, 说明用水量对基质沥青发泡膨胀率的影响不大; 仿真得到的最低发泡膨胀率为3.57, 此时发泡条件参数分别是基质沥青流量为120 g·s-1, 基质沥青温度为120℃, 发泡用水量为3.0%。Abstract: A 3 D modeling of asphalt generator was carried out by the modeling software Solidworks. The finite element simulation software Fluent was used to simulate the base asphalt foaming processes under different parameters, and the results from the experiment and the simulation were compared. The reliability of finite element simulation technology on the study of base asphalt foam expansion rate was analyzed. The finite element simulation was performed on the foaming cavity and fluid materials inside the foaming cavity. The distributed cloud images of temperature, velocity, pressure, and various phases in the foaming cavity were investigated by using the Fluent post-processing function. Simulation result shows that during the whole foaming process, the increase of base asphalt temperature results in the decrease of asphalt viscosity and the increase of water vapor in the foaming cavity. When the base asphalt temperature rises from 120 to 160 ℃, the foam expansion rate of base asphalt increases from 4 to 11, revealing a great impact of base asphalt temperature on the foam expansion rate. The increase of base asphalt flow rate serves to the increase of total amount of base asphalt in the foaming cavity and reduces the contact time and area between the base asphalts. When the entrance flow rate of base asphalt increases from 60 to 120 g·s-1, the foam expansion rate of base asphalt fluctuates between 7 and 11, indicating that the change of base asphalt flow rate has a great impact on its foam expansion rate. When the water consumption increases from 2.0% to 3.5%, the foam expansion rate of base asphalt remains the same basically, indicating that the water consumption has little effect on the foam expansion rate of base asphalt. The lowest foam expansion rate obtained by the simulation is 3.57. At this time, the base asphalt flow rate is 120 g·s-1, the base asphalt temperature is 120 ℃, and the water consumption is 3.0%.
-
表 1 仿真试验初始参数
Table 1. Initial parameters in simulation experiment
初始参数 气压/MPa 水压/MPa 含水量/% 沥青温度/℃ 入口直径/mm 出口直径/mm 喷射时间/s 数值 0.3 0.4 2 160 4 8 5 表 2 仿真试验中材料参数
Table 2. Material parameters in simulation experiment
材料类型 水 空气 热沥青 温度/K 298.15 298.15 433.15 动力黏度/ (Pa·s) 1.789 4×10-5 1.003 0×10-3 0.220 0 密度/ (kg·m-3) 998.00 3.53 1 050.00 表 3 基质沥青材料参数
Table 3. Material parameters of base asphalt
参数 密度/ (kg·m-3) 比热容/[J· (kg·K)-1] 热导率/[W· (m·K)-1] 数值 1 050 1 340 0.17 表 4 基质沥青发泡膨胀率试验数据
Table 4. Experimental data of base asphalt foam expansion rate
基质沥青流量/ (g·s-1) 80 100 120 发泡膨胀率 7.15 10.23 10.42 表 5 基质沥青发泡膨胀率仿真结果
Table 5. Simulation data of base asphalt foam expansion rate
基质沥青流量/ (g·s-1) 80 100 120 发泡膨胀率 6.95 11.14 9.28 表 6 仿真与试验结果的相对误差
Table 6. Relative errors between simulation and experiment results
基质沥青流量/ (g·s-1) 仿真发泡膨胀率 试验发泡膨胀率 相对误差/% 80 6.95 7.15 2.8 100 11.14 10.23 8.9 120 9.28 10.42 10.9 表 9 基质沥青发泡初始条件
Table 9. Initial condition of base asphalt foaming
参数 气压/MPa 基质沥青流量/ (g·s-1) 基质沥青温度/℃ 发泡用水量/% 数值 0.3 60、80、100、120 120、130、140、150、160 2.0、2.5、3.0、3.5 表 10 基质沥青流量为60 g·s-1时的发泡膨胀率
Table 10. Foam expansion rates when base asphalt flow rate is 60 g·s-1
用水量/% 不同基质沥青温度(℃) 下的发泡膨胀率 120 130 140 150 160 2.0 7.17 8.15 9.18 9.21 9.26 2.5 7.17 8.15 9.16 9.21 9.26 3.0 7.17 8.14 9.13 9.20 9.25 3.5 7.17 8.13 9.12 9.20 9.23 表 11 基质沥青流量为80 g·s-1时的发泡膨胀率
Table 11. Foam expansion rates when base asphalt flow rate is 80 g·s-1
用水量/% 不同基质沥青温度(℃) 下的发泡膨胀率 120 130 140 150 160 2.0 5.38 6.12 6.85 8.05 6.95 2.5 5.38 6.12 6.84 8.04 6.95 3.0 5.37 6.11 6.82 8.04 6.93 3.5 5.37 6.11 6.82 8.04 6.93 表 12 基质沥青流量为100 g·s-1时的发泡膨胀率
Table 12. Foam expansion rates when base asphalt flow rate is 100 g·s-1
用水量/% 不同基质沥青温度(℃) 下的发泡膨胀率 120 130 140 150 160 2.0 4.36 6.43 8.22 9.61 11.15 2.5 4.35 6.43 8.22 9.63 11.16 3.0 4.35 6.46 8.21 9.72 11.07 3.5 4.35 6.42 8.21 9.61 11.05 表 13 基质沥青流量为120 g·s-1时的发泡膨胀率
Table 13. Foam expansion rates when base asphalt flow rate is 120 g·s-1
用水量/% 不同基质沥青温度(℃) 下的发泡膨胀率 120 130 140 150 160 2.0 3.59 5.36 6.85 8.14 9.29 2.5 3.58 5.36 6.85 8.13 9.29 3.0 3.57 5.35 6.83 8.12 9.28 3.5 3.57 5.33 6.82 8.12 9.24 -
[1] 拾方治, 赫振华, 吕伟民, 等. 沥青发泡原理及发泡特性的试验研究[J]. 建筑材料学报, 2004, 7 (2): 183-187. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX200402011.htmSHI Fang-zhi, HE Zhen-hua, LYU Wei-min, et al. Principle and study of bitumen foaming[J]. Journal of Building Materials, 2004, 7 (2): 183-187. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX200402011.htm [2] 刘峰. 泡沫沥青冷再生技术及应用[J]. 公路交通技术, 2010 (6): 37-42. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJT201006011.htmLIU Feng. Foam asphalt cold regeneration technology and application[J]. Technology of Highway and Transport, 2010 (6): 37-42. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJT201006011.htm [3] 余亮, 陆海兵, 拾方治. 沥青发泡特性的评价指标研究[J]. 建设机械技术与管理, 2009, 22 (8): 82-85. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJX200908027.htmYU Liang, LU Hai-bing, SHI Fang-zhi. Research on evaluation indexes of the foaming feature of asphalt[J]. Construction Machinery Technology and Management, 2009, 22 (8): 82-85. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCJX200908027.htm [4] 张换水, 张思捷. 多指标评定沥青发泡效果的研究[J]. 交通世界, 2016 (35): 30-31, 29. https://www.cnki.com.cn/Article/CJFDTOTAL-JTSJ201635014.htmZHANG Huan-shui, ZHANG Si-jie. Study on multi-index evaluation of asphalt foaming effect[J]. Transpoworld, 2016 (35): 30-31, 29. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JTSJ201635014.htm [5] 王燕. 泡沫(乳化) 沥青冷再生混合料的剪切性能[J]. 筑路机械与施工机械化, 2017, 34 (9): 81-88. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX201709013.htmWANG Yan. Shear properties of cold recycled foamed (emulsified) asphalt mixture[J]. Road Machinery and Construction Mechanization, 2017, 34 (9): 81-88. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX201709013.htm [6] 宋朝波, 王艳敏. GFAT1型沥青发泡装置的水路系统设计[J]. 筑路机械与施工机械化, 2018, 35 (11): 90-93. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX201811018.htmSONG Zhao-bo, WANG Yan-min. Design of waterway system for GFAT1 asphalt foaming device[J]. Road Machinery and Construction Mechanization, 2018, 35 (11): 90-93. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX201811018.htm [7] 杨向阳, 胡林. 泡沫沥青温拌混合料的室内试验[J]. 筑路机械与施工机械化, 2018, 35 (5): 127-130. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX201805026.htmYANG Xiang-yang, HU Lin. Study on foamed warm mix asphalt using laboratory experiments[J]. Road Machinery and Construction Mechanization, 2018, 35 (5): 127-130. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX201805026.htm [8] CHENG Hai-ying, WEI Fu-dong, HU Zhi-yong, et al. The structural parameters optimization of asphalt foaming cavity by response surface analyzing[J]. Modelling, Measurement and Control B, 2016, 85 (1): 134-149. [9] WANG An-lin, FU Zhen-sheng, LIU Fu-min. Asphalt foaming quality control model using neural network and parameters optimization[J]. International Journal of Pavement Research and Technology, 2018, 11 (4): 401-407. doi: 10.1016/j.ijprt.2017.12.005 [10] HE G P, WONG W G. Decay properties of the foamed bitumens[J]. Construction and Building Materials, 2005, 20 (10): 866-877. [11] 曹翠星, 何桂平, 邱欣. 两种进口沥青衰退方程的比较和机理分析[J]. 中国公路学报, 2005, 18 (3): 32-36. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200503008.htmCAO Cui-xing, HE Gui-ping, QIU Xin. Comparison and mechanism analysis of decay functions of two types of imported bitumens[J]. China Journal of Highway and Transport, 2005, 18 (3): 32-36. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200503008.htm [12] 杨虎荣, 何桂平, 韩海峰. 不同粘度沥青的发泡性能比较和机理分析[J]. 公路, 2004 (6): 107-112. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200406030.htmYANG Hu-rong, HE Gui-ping, HAN Hai-feng. Effect bitumen viscosity on foamability[J]. Highway, 2004 (6): 107-112. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200406030.htm [13] 李峰, 黄颂昌, 徐剑. 泡沫沥青衰变方程与发泡特性评价[J]. 同济大学学报(自然科学版), 2011, 39 (7): 1031-1034. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201107017.htmLI Feng, HUANG Song-chang, XU Jian. Foamed bitumen decay equation and bitumen foaming characteristics evaluation[J]. Journal of Tongji University (Natural Science), 2011, 39 (7): 1031-1034. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201107017.htm [14] 李国峰. 发泡用水量对橡胶沥青高低温性能的影响研究[J]. 河南理工大学学报(自然科学版), 2018, 37 (5): 147-151.LI Guo-feng. Effects of foaming water content on high and low temperature performance of rubber asphalt[J]. Journal of Henan Polytechnic University (Natural Science), 2018, 37 (5): 147-151. (in Chinese). [15] 李强, 李豪, 卢勇, 等. 沥青发泡性能机理分析及评价指标优化研究[J]. 现代交通技术, 2011, 8 (4): 7-10. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJZ201104005.htmLI Qiang, LI Hao, LU Yong, et al. Research on asphalt foaming characteristic mechanism analysis and foaming index optimization[J]. Modern Transportation Technology, 2011, 8 (4): 7-10. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JTJZ201104005.htm [16] 何佳. 泡沫沥青发泡工艺参数研究[D]. 西安: 长安大学, 2010.HE Jia. Study on asphalt foaming process parameters[D]. Xi'an: Chang'an University, 2010. (in Chinese). [17] 王启超. 沥青发泡工艺参数试验与仿真研究[D]. 西安: 长安大学, 2012.WANG Qi-chao. The test of asphalt foaming process parameters and the study of asphalt foaming simulation[D]. Xi'an: Chang'an University, 2012. (in Chinese). [18] 李维维, 李世坤. 泡沫沥青形成机理的探讨[J]. 筑路机械与施工机械化, 2010, 27 (12): 46-49. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX201012048.htmLI Wei-wei, LI Shi-kun. Discussion on formation mechanism of foamed asphalt[J]. Road Machinery and Construction Mechanization, 2010, 27 (12): 46-49. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX201012048.htm [19] 李世坤. 沥青再生设备综述[J]. 筑路机械与施工机械化, 2003, 20 (1): 21-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX200301010.htmLI Shi-kun. Overview of asphalt recycling equipment[J]. Road Machinery and Construction Mechanization, 2003, 20 (1): 21-22. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX200301010.htm [20] 郑晓卫, 张茂峰, 周建山, 等. 常用基质沥青发泡特性的试验研究[J]. 公路与汽运, 2009 (1): 95-99. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNQY200901030.htmZHENG Xiao-wei, ZHANG Mao-feng, ZHOU Jian-shan, et al. Experimental study on foaming characteristics of common matrix asphalt[J]. Highway and Automotive Applications, 2009 (1): 95-99. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNQY200901030.htm [21] 李珂, 焦生杰. 冷再生设备制备不同材料泡沫沥青工艺参数优化[J]. 长安大学学报(自然科学版), 2014, 34 (1): 13-17. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201401004.htmLI Ke, JIAO Sheng-jie. Optimization of process parameters for preparation of different foamed asphalts using cold recycling equipment[J]. Journal of Chang'an University (Natural Science Edition), 2014, 34 (1): 13-17. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201401004.htm [22] 高超. 泡沫沥青冷再生混合料MMLS3试验轮辙曲线特征及影响机理[J]. 中国公路学报, 2019, 32 (1): 46-56. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201901007.htmGAO Chao. Characteristics of fracture curve of MMLS3 test and fatigue damage mechanism of foam asphalt cold recycled mixture[J]. China Journal of Highway and Transport, 2019, 32 (1): 46-56. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201901007.htm [23] 王启超. 基于Fluent的沥青发泡腔结构研究[J]. 筑路机械与施工机械化, 2012, 29 (10): 62-64. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX201210045.htmWANG Qi-chao. Study on structure of asphalt foaming cavity based on fluent[J]. Road Machinery and Construction Mechanization, 2012, 29 (10): 62-64. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX201210045.htm [24] 宋朝波. 沥青温拌发泡装置结构与参数研究[D]. 西安: 长安大学, 2017.SONG Zhao-bo. Study on structure and parameters of asphalt warm foaming device[D]. Xi'an: Chang'an University, 2017. (in Chinese). [25] 程海鹰, 张昱, 王安麟, 等. 沥青发泡本质特征解析下的腔体设计与评价[J]. 机械工程学报, 2012, 48 (13): 152-159. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201213025.htmCHENG Hai-ying, ZHANG Yu, WANG An-lin, et al. Foaming chamber design and evaluation based on the analysis of bitumen foaming essential characteristics[J]. Journal of Mechanical Engineering, 2012, 48 (13): 152-159. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201213025.htm [26] 王安麟, 陈强, 邱若凡. 沥青发泡腔内多相流场解析与试验的对比评价[J]. 建筑材料学报, 2013, 16 (4): 621-625. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX201304013.htmWANG An-lin, CHEN Qiang, QIU Ruo-fan. Comparative evaluation for analysis and experiment of multiphase flow field in asphalt foaming chamber[J]. Journal of Building Materials, 2013, 16 (4): 621-625. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX201304013.htm [27] 杨亮. 沥青发泡工艺性能指标的试验研究[J]. 北方交通, 2015 (9): 89-91. https://www.cnki.com.cn/Article/CJFDTOTAL-LNJT201509025.htmYANG Liang. Experimental study on performance index of asphalt foaming process[J]. Northern Communications, 2015 (9): 89-91. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LNJT201509025.htm [28] 徐金枝, 郝培文. 沥青发泡性能评价指标及优化设计研究[J]. 建筑材料学报, 2011, 14 (6): 776-780, 802. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX201106015.htmXU Jin-zhi, HAO Pei-wen. Research on the evaluation index and optimization design of asphalt foaming characteristics[J]. Journal of Building Materials, 2011, 14 (6): 776-780, 802. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX201106015.htm