留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高海拔强盐沼泽区桥梁桩基损伤现场模拟试验

冯忠居 胡海波 王富春 徐占慧 姚贤华 刘宁

冯忠居, 胡海波, 王富春, 徐占慧, 姚贤华, 刘宁. 高海拔强盐沼泽区桥梁桩基损伤现场模拟试验[J]. 交通运输工程学报, 2019, 19(3): 46-57. doi: 10.19818/j.cnki.1671-1637.2019.03.006
引用本文: 冯忠居, 胡海波, 王富春, 徐占慧, 姚贤华, 刘宁. 高海拔强盐沼泽区桥梁桩基损伤现场模拟试验[J]. 交通运输工程学报, 2019, 19(3): 46-57. doi: 10.19818/j.cnki.1671-1637.2019.03.006
FENG Zhong-ju, HU Hai-bo, WANG Fu-chun, XU Zhan-hui, YAO Xian-hua, LIU Ning. Field simulation test of bridge pile foundation damage in high altitude and strong salt marsh area[J]. Journal of Traffic and Transportation Engineering, 2019, 19(3): 46-57. doi: 10.19818/j.cnki.1671-1637.2019.03.006
Citation: FENG Zhong-ju, HU Hai-bo, WANG Fu-chun, XU Zhan-hui, YAO Xian-hua, LIU Ning. Field simulation test of bridge pile foundation damage in high altitude and strong salt marsh area[J]. Journal of Traffic and Transportation Engineering, 2019, 19(3): 46-57. doi: 10.19818/j.cnki.1671-1637.2019.03.006

高海拔强盐沼泽区桥梁桩基损伤现场模拟试验

doi: 10.19818/j.cnki.1671-1637.2019.03.006
基金项目: 

国家自然科学基金项目 51708040

国家自然科学基金项目 41272285

青海省交通科技攻关项目 2014-07

海南省交通科技项目 HNZXY2015-045R

详细信息
    作者简介:

    冯忠居(1965-), 男, 山西万荣人, 长安大学教授, 工学博士, 从事岩土工程研究

  • 中图分类号: U443.15

Field simulation test of bridge pile foundation damage in high altitude and strong salt marsh area

More Information
  • 摘要: 为了探明高海拔强盐沼泽区公路桥梁桩基受干湿循环和冻融循环的损伤状况, 采用现场模拟试验, 研究了桩身位置、混凝土配合比、混凝土掺合料与外防护措施等对桥梁桩基力学性能的影响, 采用SEM分析、EDS分析和化学成分分析等手段探究了桩基损伤的微观机理。研究结果表明: 桩基混凝土抗侵蚀能力及其内部钢筋锈蚀受桩身位置影响, 对于基准混凝土试件, 龄期为360 d时, 水中、地表、地下0.25与1.25 m的桩基混凝土抗侵蚀系数依次为0.80、0.63、0.75和0.76, 对应位置钢筋面积锈蚀率依次为76%、91%、66%和65%;桩基混凝土抗侵蚀能力受混凝土配合比与掺合料的影响, 整体上掺入矿渣的混凝土抗侵蚀能力最强, 龄期为360 d时, 当砂子、水、碎石、减水剂、水泥、阻锈剂和膨胀剂的含量一致时, 掺入87.25 kg·m-3粉煤灰、21.8 kg·m-3硅灰、87.25 kg·m-3矿渣的混凝土试件的平均抗侵蚀系数分别为0.79、0.89、0.91;钢护筒在短期内能保护桩基混凝土不受到外界侵蚀, 在长期侵蚀下保护期限一般为2~3年; 从90 d龄期到360 d龄期, 桩基混凝土中C元素的质量分数从0增长到9.61%, 生成了越来越多的CaCO3分子, 再加上钙矾石等晶体的膨胀, 使得桩基混凝土膨胀开裂。

     

  • 图  1  桥梁跨越区段

    Figure  1.  Bridge spanning section

    图  2  地下水和干湿作用

    Figure  2.  Underground water and dry-wet action

    图  3  试验方案1

    Figure  3.  Test scheme 1

    图  4  试验方案2

    Figure  4.  Test scheme 2

    图  5  试验方案3

    Figure  5.  Test scheme 3

    图  6  试验方案4

    Figure  6.  Test scheme 4

    图  7  成型试件

    Figure  7.  Formed specimens

    图  8  养护试件

    Figure  8.  Cured specimens

    图  9  水中试件

    Figure  9.  Underwater specimens

    图  10  地表试件

    Figure  10.  Ground specimens

    图  11  预埋钢筋

    Figure  11.  Embedded bar

    图  12  预处理钢筋

    Figure  12.  Pretreated steel bars

    图  13  钢筋面积锈蚀率测定

    Figure  13.  Determination of corrosion rate of steel bar area

    图  14  CMP1、CMP2、CMP3抗侵蚀系数对比

    Figure  14.  Comparison of erosion resistance coefficients of CMP1, CMP2, and CMP3

    图  15  CMP3、CMP4、CMP7、CMP8、CMP9抗侵蚀系数对比

    Figure  15.  Comparison of erosion resistance coefficients of CMP3, CMP4, CMP7, CMP8, and CMP9

    图  16  CMP11、CMP12抗侵蚀系数对比

    Figure  16.  Comparison of erosion resistance coefficients of CMP11 and CMP12

    图  17  三毡两油试件

    Figure  17.  Three-felt two-oil specimen

    图  18  钢护筒试件

    Figure  18.  Specimen with steel sheath

    图  19  桩基混凝土抗侵蚀系数

    Figure  19.  Erosion resistance coefficients of pile foundation concretes

    图  20  涂抹环氧树脂与阻锈剂后的钢筋

    Figure  20.  Steel bar after applying epoxy resin and rust inhibitor

    图  21  FEG电镜

    Figure  21.  FEG electron microscope

    图  22  镀金试件

    Figure  22.  Gold-plated specimen

    图  23  CMP5的SEM图

    Figure  23.  SEM images of CMP5

    表  1  桩基混凝土试件配合比

    Table  1.   Concrete specimens mix proportions of pile foundation

    混凝土试件编号 配合比/ (kg·m-3)
    砂子 碎石 减水剂 水泥 阻锈剂 膨胀剂 矿渣 硅灰 粉煤灰 水泥基自愈合材料
    CMP1 767 170 1 103 5.23 348.75 8.75 43.5 87.25
    CMP2 767 170 1 103 5.23 414.25 8.75 43.5 21.8
    CMP3 767 170 1 103 5.23 348.75 8.75 43.5 87.25
    CMP4 767 170 1 103 5.23 348.75 8.75 87.25 6.55
    CMP5 767 170 1 103 5.23 436.00 8.75 6.55
    CMP6 767 170 1 103 5.23 326.95 8.75 21.8 87.25
    CMP7 767 170 1 103 5.23 327.00 21.8 87.25
    CMP8 767 170 1 103 5.23 348.75 87.25 6.55
    CMP9 767 170 1 103 5.23 414.25 21.8 6.55
    CMP10 767 170 1 103 5.23 327.00 21.8 87.25 6.55
    CMP11 767 170 1 103 5.23 436.00
    CMP12 767 170 1 103 5.23 436.00
    CMP13 767 170 1 103 5.23 436.00
    下载: 导出CSV

    表  2  CMP4和CMP8抗侵蚀系数对比

    Table  2.   Comparison of erosion resistance coefficients of CMP4 and CMP8

    埋置位置 抗侵蚀系数 抗侵蚀系数降低率/%
    CMP4 CMP8
    水中 0.74 0.70 -5.7
    地表 0.59 0.63 6.3
    地下0.25 m处 0.62 0.68 8.8
    地下1.25 m处 0.61 0.64 4.7
    下载: 导出CSV

    表  3  决定系数比较

    Table  3.   Comparison of determination coefficients

    混凝土试件编号 埋置位置
    水中 地表 地下0.25 m处 地下1.25 m处
    CMP1 0.80 0.75 0.72 0.97
    CMP2 0.93 0.79 0.84 0.97
    CMP3 0.71 0.70 0.93 0.85
    CMP4 0.79 0.86 0.86 0.95
    CMP5 0.76 0.80 0.83 0.86
    CMP6 0.71 0.72 0.84 0.78
    CMP7 0.84 0.82 0.86 0.94
    CMP8 0.77 0.59 0.75 0.57
    CMP9 0.86 0.88 0.97 0.90
    CMP10 0.79 0.79 0.85 0.88
    CMP11 0.71 0.88 0.83 0.93
    CMP12 0.75 0.94 0.66 0.98
    下载: 导出CSV

    表  4  360 d龄期时CMP11的钢筋面积锈蚀率

    Table  4.   Corrosion rates of steel bar area of CMP11 at curing age of 360 d

    埋置位置 水中 地表 地下0.25 m处 地下1.25 m处
    锈蚀率/% 76.0 91.0 66.0 65.0
    下载: 导出CSV

    表  5  CMP6和CMP7的钢筋面积锈蚀率比较

    Table  5.   Comparison of corrosion rates of steel bar area of CMP6 and CMP7

    埋置位置 水中 地表 地下0.25 m处 地下1.25 m处
    90 d时CMP6的钢筋面积锈蚀率/% 5.7 3.1 3.8 3.8
    90 d时CMP7的钢筋面积锈蚀率/% 4.8 3.3 4.5 3.8
    270 d时CMP6的钢筋面积锈蚀率/% 5.9 5.5 5.1 4.7
    270 d时CMP7的钢筋面积锈蚀率/% 6.3 5.8 5.2 4.9
    360 d时CMP6的钢筋面积锈蚀率/% 27.0 33.0 19.0 6.0
    360 d时CMP7的钢筋面积锈蚀率/% 51.0 49.0 52.0 32.0
    下载: 导出CSV

    表  6  CMP9、CMP10和CMP12的钢筋面积锈蚀率比较

    Table  6.   Comparison of corrosion rates of steel bar area of CMP9, CMP10, and CMP12

    混凝土试件编号 水中 地表 地下0.25 m处 地下1.25 m处
    CMP9 8.9 38.0 10.2 6.9
    CMP10 9.0 31.0 9.8 7.9
    CMP12 67.0 58.0 81.0 49.0
    下载: 导出CSV

    表  7  90 d龄期时CMP5分析结果

    Table  7.   Analysis result of CMP5 at curing age of 90 d

    下载: 导出CSV

    表  8  360 d龄期时CMP5分析结果

    Table  8.   Analysis result of CMP5 at curing age of 360 d

    下载: 导出CSV
  • [1] 冯忠居, 谢永利, 张宏光, 等. 地面水对黄土地区桥梁桩基承载力影响试验研究[J]. 岩石力学与工程学报, 2005, 24 (10): 1758-1765. doi: 10.3321/j.issn:1000-6915.2005.10.021

    FENG Zhong-ju, XIE Yong-li, ZHANG Hong-guang, et al. Experimental study on effect of surface water on bearing capacity of pile foundation in loess area[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24 (10): 1758-1765. (in Chinese). doi: 10.3321/j.issn:1000-6915.2005.10.021
    [2] 冯忠居, 谢永利, 张宏光, 等. "滇西红层"区大直径桥梁桩基承载力影响因素综合研究[J]. 岩土工程学报, 2005, 27 (5): 540-544. doi: 10.3321/j.issn:1000-4548.2005.05.011

    FENG Zhong-ju, XIE Yong-li, ZHANG Hong-guang, et al. Comprehensive analysis on influencing factors of bearing capacity of large diameter pile foundation for red bed in West Yunnan[J]. Chinese Journal of Geotechnical Engineering, 2005, 27 (5): 540-544. (in Chinese). doi: 10.3321/j.issn:1000-4548.2005.05.011
    [3] 董芸秀, 冯忠居, 郝宇萌, 等. 岩溶区桥梁桩基承载力试验与合理嵌岩深度[J]. 交通运输工程学报, 2018, 18 (6): 27-36. doi: 10.3969/j.issn.1671-1637.2018.06.004

    DONG Yun-xiu, FENG Zhong-ju, HAO Yu-meng, et al. Experiment on bearing capacity of bridge pile foundations in karst areas and reasonable rock-socketed depth[J]. Journal of Traffic and Transportation Engineering, 2018, 18 (6): 27-36. (in Chinese). doi: 10.3969/j.issn.1671-1637.2018.06.004
    [4] 冯忠居, 王溪清, 李孝雄, 等. 强震作用下的砂土液化对桩基力学特性影响[J]. 交通运输工程学报, 2019, 19 (1): 71-84. doi: 10.3969/j.issn.1671-1637.2019.01.008

    FENG Zhong-ju, WANG Xi-qing, LI Xiao-xiong, et al. Effect of sand liquefaction on mechanical properties of pile foundation under strong earthquake[J]. Journal of Traffic and Transportation Engineering, 2019, 19 (1): 71-84. (in Chinese). doi: 10.3969/j.issn.1671-1637.2019.01.008
    [5] 姚贤华, 冯忠居, 王富春, 等. 复合盐浸下多元外掺剂-混凝土抗干湿-冻融循环性能[J]. 复合材料学报, 2018, 35 (3): 690-698. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201803028.htm

    YAO Xian-hua, FENG Zhong-ju, WANG Fu-chun, et al. Property of multiple admixture-concrete in multi-salt soaking under wetting-drying and freezing-thawing cycles[J]. Acta Materiae Compositae Sinica, 2018, 35 (3): 690-698. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201803028.htm
    [6] 姚贤华, 冯忠居, 管俊峰, 等. 不同掺合料对盐碱腐蚀条件下干湿循环后混凝土性能的影响[J]. 工业建筑, 2018, 48 (3): 6-10, 30. https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ201803002.htm

    YAO Xian-hua, FENG Zhong-ju, GUAN Jun-feng, et al. Influences of different admixtures on characteristics of concrete after drying wetting cycle under the saline corrosion[J]. Industrial Building, 2018, 48 (3): 6-10, 30. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ201803002.htm
    [7] 王富春, 姚贤华, 冯忠居, 等. 盐沼泽腐蚀对公路桥梁桩基础竖向极限承载力影响的数值模拟研究[J]. 公路, 2017 (1): 60-66. doi: 10.3969/j.issn.1674-0610.2017.01.014

    WANG Fu-chun, YAO Xian-hua, FENG Zhong-ju, et al. Numerical simulation and research on the vertical ultimate bearing capacity impact of highway bridge pile foundation in salt marshes corrosion[J]. Highway, 2017 (1): 60-66. (in Chinese). doi: 10.3969/j.issn.1674-0610.2017.01.014
    [8] 冯忠居, 乌延玲, 成超, 等. 板块状盐渍土的盐溶和盐胀特性研究[J]. 岩土工程学报, 2010, 32 (9): 1439-1442. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201009027.htm

    FENG Zhong-ju, WU Yan-ling, CHENG Chao, et al. Salt-dissolution and salt-heaving characteristics of plate-like saline soil[J]. Chinese Journal of Geotechnical Engineering, 2010, 32 (9): 1439-1442. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201009027.htm
    [9] 冯忠居, 成超, 王廷武, 等. 荒漠极干旱区板块状盐渍土微结构变化对其强度特性的影响分析[J]. 岩土工程学报, 2011, 33 (7): 1142-1145. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201107024.htm

    FENG Zhong-ju, CHENG Chao, WANG Ting-wu, et al. Effect of microstructural changes of plate-like saline soil on its strength in extremely arid desert area[J]. Chinese Journal of Geotechnical Engineering, 2011, 33 (7): 1142-1145. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201107024.htm
    [10] SOROCHAN E A. Use of piles in expansive soils[J]. Soil Mechanics and Foundation Engineering, 1974, 11 (1): 33-38. doi: 10.1007/BF01705179
    [11] ALI E M, ABBADI S E M. A technical note on the probabilistic analysis of short piles on expansive soil[J]. Civil Engineering Systems, 1988, 5 (3): 159-163. doi: 10.1080/02630258808970522
    [12] FERREGUT C, PICORNELL M. Reliability analysis of drilled piers in expansive soils[J]. Canadian Geotechnical Journal, 1991, 28 (6): 834-842. doi: 10.1139/t91-101
    [13] MOHAMEDZEIN Y E A, MOHAMED M G, EL SHARIEF A M. Finite element analysis of short piles in expansive soils[J]. Computers and Geotechnics, 1999, 24 (3): 231-243. doi: 10.1016/S0266-352X(99)00008-7
    [14] KUMAR B R P, RAO N R. Increasing pull-out capacity of granular pile anchors in expansive soils using base geosynthetics[J]. Canadian Geotechnical Journal, 2000, 37 (4): 870-881. doi: 10.1139/t00-012
    [15] XIAO Hong-bin, ZHANG Chun-shun, WANG Yong-he, et al. Pile-soil interaction in expansive soil foundation: analytical solution and numerical simulation[J]. International Journal of Geomechanics, 2011, 11 (3): 159-166. doi: 10.1061/(ASCE)GM.1943-5622.0000046
    [16] SOUNDARA B, ROBINSON R G. Hyperbolic model to evaluate uplift force on pile in expansive soils[J]. KSCE Journal of Civil Engineering, 2017, 21 (3): 746-751. doi: 10.1007/s12205-016-1001-8
    [17] STEWART M G, WANG Xiao-ming, NGUYEN M N. Climate change impact and risks of concrete infrastructure deterioration[J]. Engineering Structures, 2011, 33 (4): 1326-1337. doi: 10.1016/j.engstruct.2011.01.010
    [18] WEYERS R E. Service life model for concrete structures in chloride laden environments[J]. ACI Materials Journal, 1998, 95 (4): 445-453.
    [19] 苗如松, 李青宁, 白伦华, 等. 跨海大桥主墩桩基钢护筒腐蚀损伤识别[J]. 防灾减灾工程学报, 2018, 38 (2): 289-296. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201802012.htm

    MIAO Ru-song, LI Qing-ning, BAI Lun-hua, et al. Damage identification for corroded steel pile casing of the cross-ocean bridge[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38 (2): 289-296. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201802012.htm
    [20] 张效忠, 姚文娟. 现役结构桩基小损伤高精度识别[J]. 北京工业大学学报, 2013, 39 (10): 1499-1504. doi: 10.11936/bjutxb2013101499

    ZHANG Xiao-zhong, YAO Wen-juan. Small damage high-precision identification of serving structural pile[J]. Journal of Beljing University of Technology, 2013, 39 (10): 1499-1504. (in Chinese). doi: 10.11936/bjutxb2013101499
    [21] 王仁华, 方媛媛, 窦培林, 等. 点蚀损伤下桩基式平台腿柱轴压极限承载力研究[J]. 海洋工程, 2015, 33 (3): 29-35. https://www.cnki.com.cn/Article/CJFDTOTAL-HYGC201503004.htm

    WANG Ren-hua, FANG Yuan-yuan, DOU Pei-lin, et al. Investigation on ultimate strength of pile-foundation platform legs with pitting corrosion subjected to axial compression[J]. The Ocean Engineering, 2015, 33 (3): 29-35. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HYGC201503004.htm
    [22] 赵安平, 李昊洁, 俞红升, 等. 某高桩码头桩基受力有限元分析及结构损伤研究[J]. 长江科学院院报, 2016, 33 (9): 128-132, 137. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201609025.htm

    ZHAO An-ping, LI Hao-jie, YU Hong-sheng, et al. Finite element stress analysis and structural damage research of pile foundation of high-piled wharf[J]. Journal of Yangtze River Scientific Research Institute, 2016, 33 (9): 128-132, 137. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201609025.htm
    [23] 李肖, 苏静波, 吉同元, 等. 高桩码头桩基动力损伤识别方法[J]. 水运工程, 2015 (10): 57-62. doi: 10.3969/j.issn.1002-4972.2015.10.010

    LI Xiao, SU Jing-bo, JI Tong-yuan, et al. Identification method for pile foundation's dynamic damage of piled wharf[J]. Port and Waterway Engineering, 2015 (10): 57-62. (in Chinese). doi: 10.3969/j.issn.1002-4972.2015.10.010
    [24] 蔡忠祥, 刘陕南, 高承勇, 等. 基于混凝土损伤模型的灌注桩水平承载性状分析[J]. 岩石力学与工程学报, 2014, 33 (增2): 4032-4040. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S2081.htm

    CAI Zhong-xiang, LIU Shan-nan, GAO Cheng-yong, et al. Analysis of lateral response of bored piles based on concrete damaged plasticity model[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33 (S2): 4032-4040. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S2081.htm
    [25] 范庆来, 于仁斌, 亓良. 考虑混凝土损伤和钢筋屈服的海上单桩基水平承载特性数值分析[J]. 应用基础与工程科学学报, 2017, 25 (5): 1026-1039. https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX201705013.htm

    FAN Qing-lai, YU Ren-bin, QI Liang. Numerical analysis of lateral bearing behavior of offshore single pile considering concrete damage and reinforcement yielding[J]. Journal of Basic Science and Engineering, 2017, 25 (5): 1026-1039. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX201705013.htm
    [26] 杨良, 孙立军. 钢筋混凝土桥梁的钢筋锈蚀与疲劳耦合损伤[J]. 同济大学学报(自然科学版), 2015, 43 (12): 1784-1787, 1800. doi: 10.11908/j.issn.0253-374x.2015.12.003

    YANG Liang, SUN Li-jun. Damage of steel bar of reinforced concrete bridge by the coupling effect of corrosion and fatigue[J]. Journal of Tongji University, 2015, 43 (12): 1784-1787, 1800. (in Chinese). doi: 10.11908/j.issn.0253-374x.2015.12.003
    [27] 姚贤华, 冯忠居, 王富春, 等. 盐沼泽环境下公路桥梁桩基材料耐腐蚀试验[J]. 长安大学学报(自然科学版), 2018, 38 (1): 49-58. doi: 10.3969/j.issn.1671-8879.2018.01.007

    YAO Xian-hua, FENG Zhong-ju, WANG Fu-chun, et al. Experiment on erosion-resistance of highway bridge pile foundation material under salt marshes environment[J]. Journal of Chang'an University (Natural Science Edition), 2018, 38 (1): 49-58. (in Chinese). doi: 10.3969/j.issn.1671-8879.2018.01.007
    [28] DENG Ju-long. Introduction to grey system theory[J]. Journal of Grey System, 1989 (1): 1-24.
    [29] TSERNG H P, NGO T L, CHEN P C, et al. A grey system theory-based default prediction model for construction firms[J]. Computer-Aided Civil and Infrastructure Engineering, 2015, 30 (2): 120-134. doi: 10.1111/mice.12074
    [30] 冯忠居, 陈思晓, 徐浩, 等. 基于灰色系统理论的高寒盐沼泽区混凝土耐久性评估[J]. 交通运输工程学报, 2018, 18 (6): 18-26. doi: 10.3969/j.issn.1671-1637.2018.06.003

    FENG Zhong-ju, CHEN Si-xiao, XU Hao, et al. Durability evaluation of concrete in alpine salt marsh area based on dray system theory[J]. Journal of Traffic and Transportation Engineering, 2018, 18 (6): 18-26. (in Chinese). doi: 10.3969/j.issn.1671-1637.2018.06.003
  • 加载中
图(23) / 表(8)
计量
  • 文章访问数:  713
  • HTML全文浏览量:  202
  • PDF下载量:  370
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-13
  • 刊出日期:  2019-06-25

目录

    /

    返回文章
    返回