Distribution characteristics of grouting reinforcement ring for tunnel with heterogeneous weak surrounding rock
-
摘要: 基于随机分布理论和流-固耦合理论, 考虑注浆过程中围岩物性参数的动态变化和浆液黏度时变性, 推导了流-固耦合作用下非均质软弱围岩的浆液扩散方程, 并运用多场耦合软件COMSOL Multiphysics建立了小导管注浆浆液在非均质软弱围岩中的扩散模型, 系统研究了注浆参数与小导管布设等对浆液扩散与注浆加固圈形成的影响。研究结果表明: 浆液在非均质软弱围岩内以类椭圆形向四周扩散, 扩散形态随注浆压力、注浆时间与围岩参数等动态变化而不断变化, 最终趋于稳定; 在注浆过程中, 增大注浆压力和延长注浆时间在一定程度上可提高浆液的渗透能力并改善围岩的渗透性, 而适当的增大小导管布设长度或减小导管布设角度有利于注浆加固圈的形成; 为达到最优注浆效果, 洞头山隧道小导管预注浆加固压力宜设为1 MPa, 注浆时间宜控制在400 s, 小导管布设角度不宜小于30°, 布设长度应大于2.5 m; 经现场监测验证, 隧道围岩28 d抗压强度提高至2 MPa, 围岩渗透系数降至10-5 cm·s-1, 后续台阶法施工开挖拱顶沉降均小于3 cm, 围岩整体性和连续性得了显著提高。Abstract: Based on the random distribution theory and fluid-solid coupling theory, the dynamic changes of physical parameters of surrounding rock and the time-varying viscosity of grouts in the grouting process were considered, a grout diffusion equation of a tunnel with heterogeneous weak surrounding rock under fluid-solid coupling was deduced. A grout diffusion model of small pipe grouting in heterogeneous weak surrounding rock was established by using the multi-field coupling software COMSOL Multiphysics, and the effects of grouting parameters and arrangement of small pipe on the grout diffusion and the formation of grouting reinforcement ring were systematically studied. Research result shows that the grout in heterogeneous weak surrounding rock disperses in a quasi-elliptical shape. The diffusion patterns change continuously with the dynamic changes of grouting pressure, grouting time and parameters of surrounding rock, and finally tend to be stable. In the grouting process, the permeability of surrounding rock and the penetration capacity of grout can be improved to a certain degree with the increases of grouting pressure and grouting time. While increasing the length of small pipe or reducing the angle of small pipe is beneficial to the formation of grouting reinforcement ring. To achieve the optimal grouting effect, the pre-grouting reinforcement pressure of small pipe in Dongtoushan Tunnel should be designed as 1 MPa, the grouting time should be controlled at 400 s, the angle of small pipe should not be less than 30°, and the length of small pipe should be more than 2.5 m. With the field monitoring and verification, the 28-day compressive strength of tunnel surrounding rock increases to 2 MPa, the permeability coefficient of surrounding rock reduces to 10-5 cm·s-1, the settlement value of vault roof excavated by subsequent step method is less than 3 cm, and the integrity and continuity of surrounding rock are improved significantly.
-
表 1 数值计算基本力学参数
Table 1. Basic mechanical parameters of numerical calculation
围岩密度/ (kg·m-3) 弹性模量/GPa 泊松比 黏聚力/MPa 内摩擦角/ (°) 浆液密度/ (kg·m-3) Biot系数 浆液初始黏度/ (Pa·s) 浆液压缩率/GPa-1 Lame系数/MPa-1 2 100 15 0.3 2.6 32 1 430 1.0 0.09 0.44 0.35 表 2 不同小导管布设角度下注浆加固圈厚度
Table 2. Thicknesses of grouting reinforcement ring under different angles of small pipe layout
小导管布设角度/ (°) 10 15 20 25 30 35 40 是否形成加固圈 是 是 是 是 是 是 否 加固圈厚度/m 3.3 2.9 2.4 2.0 1.7 0.3 0.0 表 3 不同小导管布设长度下注浆加固圈厚度
Table 3. Thicknesses of grouting reinforcement ring under different lengths of small pipe layout
小导管布设长度/m 0.5 1.0 1.5 2.0 2.5 3.0 3.5 是否形成加固圈 否 否 是 是 是 是 是 加固圈厚度/m 0.0 0.0 0.2 0.4 1.2 1.5 1.7 -
[1] 张志强, 关宝树. 软弱围岩隧道在高地应力条件下的变形规律研究[J]. 岩土工程学报, 2000, 22 (6): 696-700. doi: 10.3321/j.issn:1000-4548.2000.06.013ZHANG Zhi-qiang, GUAN Bao-shu. Research on the deformation rule of weak rock mass tunnel under high initial geostress[J]. Chinese Journal of Geotechnical Engineering, 2000, 22 (6): 696-700. (in Chinese). doi: 10.3321/j.issn:1000-4548.2000.06.013 [2] 刘全林, 杨敏. 软弱围岩巷道锚注支护机理及其变形分析[J]. 岩石力学与工程学报, 2002, 21 (8): 1158-1161. doi: 10.3321/j.issn:1000-6915.2002.08.011LIU Quan-lin, YANG Min. Analysis on deformation of surrounding rock masses of tunnel using bolt-grouting support and its mechanism[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21 (8): 1158-1161. (in Chinese). doi: 10.3321/j.issn:1000-6915.2002.08.011 [3] 刘志春, 李文江, 朱永全, 等. 软岩大变形隧道二次衬砌施作时机探讨[J]. 岩石力学与工程学报, 2008, 27 (3): 580-588. doi: 10.3321/j.issn:1000-6915.2008.03.019LIU Zhi-chun, LI Wen-jiang, ZHU Yong-quan, et al. Research on construction time of secondary lining in soft rock of large-deformation tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27 (3): 580-588. (in Chinese). doi: 10.3321/j.issn:1000-6915.2008.03.019 [4] ZHANG Xiang-don, FENG Guang, XU Jian-lai. The fractal characteristics of wall rock crack in the soft rock roadway and study on theory of loose ring[J]. Advanced Materials Research, 2012, 396-398: 2494-2498. [5] 王亚琼, 汪珂, 孙铁军, 等. 软弱围岩隧道塌方段力学性状测试与数值分析[J]. 应用力学学报, 2015, 32 (3): 384-389. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201503007.htmWANG Ya-qiong, WANG Ke, SUN Tie-jun, et al. Test and numerical study on mechanical properties of tunnel collapse in soft surrounding rock[J]. Chinese Journal of Applied Mechanics, 2015, 32 (3): 384-389. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201503007.htm [6] 徐哲文. 破碎围岩隧道开挖小导管高压注浆机理及效果分析[J]. 北京交通大学学报, 2008, 32 (4): 132-136, 140. doi: 10.3969/j.issn.1673-0291.2008.04.031XU Zhe-wen. Study on mechanism and effect of ductule high pressure grouting technology for tunneling construction in fracture wall rock[J]. Journal of Beijing Jiaotong University, 2008, 32 (4): 132-136, 140. (in Chinese). doi: 10.3969/j.issn.1673-0291.2008.04.031 [7] 石钰锋, 阳军生, 杨峰, 等. 软弱围岩大断面隧道相向施工围岩稳定性分析与掌子面加固研究[J]. 公路交通科技, 2013, 30 (5): 82-88, 111. doi: 10.3969/j.issn.1002-0268.2013.05.014SHI Yu-feng, YANG Jun-sheng, YANG Feng, et al. Study of stability of surrounding rock due to approaching of two excavation faces and face reinforcement in a large cross-section tunnel in weak stratum[J]. Journal of Highway and Transportation Research and Development, 2013, 30 (5): 82-88, 111. (in Chinese). doi: 10.3969/j.issn.1002-0268.2013.05.014 [8] 杨米加, 陈明雄, 贺永年. 注浆理论的研究现状及发展方向[J]. 岩石力学与工程学报, 2001, 20 (6): 839-841. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200106024.htmYANG Mi-jia, CHEN Ming-xiong, HE Yong-nian. Current research state of grouting technology and its development direction in future[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20 (6): 839-841. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200106024.htm [9] LEE J S, BANG C S, MOK Y J, et al. Numerical and experimental analysis of penetration grouting in jointed rock masses[J]. International Journal of Rock Mechanics and Mining Sciences, 2000 (37): 1027-1037. [10] 汪磊, 李涛. 基于牛顿流体的海底隧道穿越裂隙岩体注浆扩散半径计算[J]. 土工基础, 2012, 26 (10): 51-53. https://www.cnki.com.cn/Article/CJFDTOTAL-TGJC201205018.htmWANG Lei, LI Tao. Application of Newton fluid theory to estimate effective radius of grout zone for tunneling through fractured rock under sea[J]. Soil Engineering and Foundation, 2012, 26 (10): 51-53. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TGJC201205018.htm [11] FUNEHAG J, FRANSSON A. Sealing narrow fractures with a Newtonian fluid: model prediction for grouting verified by field study[J]. Tunnelling and Underground Space Technology, 2006, 21 (5): 492-498. doi: 10.1016/j.tust.2005.08.010 [12] 杨秀竹, 王星华, 雷金山. 宾汉体浆液扩散半径的研究及应用[J]. 水利学报, 2004 (6): 75-79. doi: 10.3321/j.issn:0559-9350.2004.06.013YANG Xiu-zhu, WANG Xing-hua, LEI Jin-shan. Study on grouting diffusion radius of Bingham fluids[J]. Journal of Hydraulic Engineering, 2004 (6): 75-79. (in Chinese). doi: 10.3321/j.issn:0559-9350.2004.06.013 [13] 张聪, 梁经纬, 张箭, 等. 基于脉动注浆的宾汉流体渗透扩散机制研究[J]. 岩土力学, 2018, 39 (8): 2740-2746, 2754. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201808004.htmZHANG Cong, LIANG Jing-wei, ZHANG Jian, et al. Mechanism of Bingham fluid permeation and diffusion based on pulse injection[J]. Rock and Soil Mechanics, 2018, 39 (8): 2740-2746, 2754. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201808004.htm [14] 杨志全, 侯克鹏, 梁维, 等. 牛顿流体柱-半球面渗透注浆形式扩散参数的研究[J]. 岩土力学, 2014, 35 (增2): 17-24. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2014S2003.htmYANG Zhi-quan, HOU Ke-peng, LIANG Wei, et al. Study of diffusion parameters of Newtonian fluid based on column-hemispherical penetration grouting[J]. Rock and Soil Mechanics, 2014, 35 (S2): 17-24. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2014S2003.htm [15] 张聪, 梁经纬, 阳军生, 等. 考虑区间分布的幂律流体脉动渗透注浆扩散机制研究[J]. 岩土工程学报, 2018, 40 (11): 2120-2128. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201811024.htmZHANG Cong, LIANG Jing-wei, YANG Jun-sheng, et al. Diffusion mechanism of pulsating seepage grouting slurry with power-law fluid considering interval distribution[J]. Chinese Journal of Geotechnical Engineering, 2018, 40 (11): 2120-2128. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201811024.htm [16] 杨秀竹, 雷金山, 夏力农, 等. 幂律型浆液扩散半径研究[J]. 岩土力学, 2005, 26 (11): 1803-1806. doi: 10.3969/j.issn.1000-7598.2005.11.019YANG Xiu-zhu, LEI Jin-shan, XIA Li-nong, et al. Study on grouting diffusion radius of exponential fluids[J]. Rock and Soil Mechanics, 2005, 26 (11): 1803-1806. (in Chinese). doi: 10.3969/j.issn.1000-7598.2005.11.019 [17] 杨志全, 牛向东, 侯克鹏, 等. 流变参数时变性幂律型水泥浆液的柱形渗透注浆机制研究[J]. 岩石力学与工程学报, 2015, 34 (7): 1415-1425. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201507014.htmYANG Zhi-quan, NIU Xiang-dong, HOU Ke-peng, et al. Columnar diffusion of cement grout with time dependent rheological parameters[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34 (7): 1415-1425. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201507014.htm [18] 杨米加, 陈明雄, 贺永年. 裂隙岩体注浆模拟实验研究[J]. 实验力学, 2001, 16 (1): 105-112. doi: 10.3969/j.issn.1001-4888.2001.01.016YANG Mi-jia, CHEN Ming-xiong, HE Yong-nian. Simulating experiment for grouting seepage in rockmass[J]. Journal of Experimental Mechanics, 2001, 16 (1): 105-112. (in Chinese). doi: 10.3969/j.issn.1001-4888.2001.01.016 [19] 俞文生, 李鹏, 张霄, 等. 可变倾角单裂隙动水注浆模型试验研究[J]. 岩土力学, 2014, 35 (8): 2137-2143, 2149. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201408002.htmYU Wen-sheng, LI Peng, ZHANG Xiao, et al. Model test research on hydrodynamic grouting for single fracture with variable inclinations[J]. Rock and Soil Mechanics, 2014, 35 (8): 2137-2143, 2149. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201408002.htm [20] 湛铠瑜, 隋旺华, 高岳. 单一裂隙动水注浆扩散模型[J]. 岩土力学, 2011, 32 (6): 1659-1663, 1689. doi: 10.3969/j.issn.1000-7598.2011.06.011ZHAN Kai-yu, SUI Wang-hua, GAO Yue. A model for grouting into single fracture with flowing water[J]. Rock and Soil Mechanics, 2011, 32 (6): 1659-1663, 1689. (in Chinese). doi: 10.3969/j.issn.1000-7598.2011.06.011 [21] 湛铠瑜, 隋旺华, 王文学. 裂隙动水注浆渗流压力与注浆堵水效果的相关分析[J]. 岩土力学, 2012, 33 (9): 2650-2655, 2662. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201209019.htmZHAN Kai-yu, SUI Wang-hua, WANG Wen-xue. Correlation analysis of seepage pressure and water plugging effect during grouting into a fracture with flowing water[J]. Rock and Soil Mechanics, 2012, 33 (9): 2650-2655, 2662. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201209019.htm [22] 张庆松, 张连震, 刘人太, 等. 水泥-水玻璃浆液裂隙注浆扩散的室内试验研究[J]. 岩土力学, 2015, 36 (8): 2159-2168. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201508005.htmZHANG Qing-song, ZHANG Lian-zhen, LIU Ren-tai, et al. Laboratory experimental study of cement-silicate slurry diffusion law of crack grouting with dynamic water[J]. Rock and Soil Mechanics, 2015, 36 (8): 2159-2168. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201508005.htm [23] 杨坪, 唐益群, 彭振斌, 等. 砂卵(砾) 石层中注浆模拟试验研究[J]. 岩土工程学报, 2006, 28 (12): 2134-2138. doi: 10.3321/j.issn:1000-4548.2006.12.016YANG Ping, TANG Yi-qun, PENG Zhen-bin, et al. Study on grouting simulating experiment in sandy gravels[J]. Chinese Journal of Geotechnical Engineering, 2006, 28 (12): 2134-2138. (in Chinese). doi: 10.3321/j.issn:1000-4548.2006.12.016 [24] KLEINLUGTENBELT R, BEZUIJEN A, VAN TOL A F. Model tests on compensation grouting[J]. Tunnelling and Underground Space Technology, 2006, 21 (3): 435-436. [25] 钱自卫, 姜振泉, 曹丽文, 等. 弱胶结孔隙介质渗透注浆模型试验研究[J]. 岩土力学, 2013, 34 (1): 139-142, 147. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201301020.htmQIAN Zi-wei, JIANG Zhen-quan, CAO Li-wen, et al. Experiment study of penetration grouting model for weakly cemented porous media[J]. Rock and Soil Mechanics, 2013, 34 (1): 139-142, 147. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201301020.htm [26] SAADA Z, CANOU J, DORMIEUX L, et al. Modelling of cement suspension flow in granular porous media[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2005, 29 (7): 691-711. doi: 10.1002/nag.433 [27] 雷进生. 碎石土地基注浆加固力学行为研究[D]. 北京: 中国地质大学, 2013.LEI Jin-sheng. Research onmechanical behavior of grout in gravelly soil foundations[D]. Beijing: China University of Geosciences, 2013. (in Chinese). [28] 吕晓光, 张永庆, 陈兵, 等. 深度开发油田确定性与随机建模结合的相控建模[J]. 石油学报, 2004, 25 (5): 60-64. doi: 10.3321/j.issn:0253-2697.2004.05.012LYU Xiao-guang, ZHANG Yong-qing, CHEN Bing, et al. Facies-controlled modeling for mature developed oilfield by integrating determinacy and stochastic methods[J]. Acta Petrolei Sinica, 2004, 25 (5): 60-64. (in Chinese). doi: 10.3321/j.issn:0253-2697.2004.05.012 [29] CHENG Peng-da, LI Lu, TANG Ju, et al. Application of time-varying viscous grout in gravel foundation anti-seepage treatment[J]. Journal of Hydrodynamics, 2011, 23 (3): 391-397. doi: 10.1016/S1001-6058(10)60128-X [30] KLEINBERG R L, FLAUM C, GRIFFIN D D, et al. Deep sea NMR: methane hydrate growth habit in porous media and its relationship to hydraulic permeability, deposit accumulation, and submarine slope stability[J]. Journal of Geophysical Research, 2003, 108 (B10): 1-17. [31] 阮文军. 基于浆液黏度时变性的岩体裂隙注浆扩散模型[J]. 岩石力学与工程学报, 2005, 24 (15): 2709-2714. doi: 10.3321/j.issn:1000-6915.2005.15.018RUAN Wen-jun. Spreading model of grouting in rock mass fissures based on time-dependent behavior of viscosity of cement-based grouts[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24 (15): 2709-2714. (in Chinese). doi: 10.3321/j.issn:1000-6915.2005.15.018 [32] 李术才, 刘人太, 张庆松, 等. 基于黏度时变性的水泥-玻璃浆液扩散机制研究[J]. 岩石力学与工程学报, 2013, 32 (12): 2415-2421. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201312005.htmLI Shu-cai, LIU Ren-tai, ZHANG Qing-song, et al. Research on C-S slurry diffusion mechanism with time-dependent behavior of viscosity[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32 (12): 2415-2421. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201312005.htm