留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CRTSⅡ型板式轨道底座板后浇带脱空对轨道结构与行车的影响

杨荣山 汪杰 姜恒昌 陈帅 杜金鑫

杨荣山, 汪杰, 姜恒昌, 陈帅, 杜金鑫. CRTSⅡ型板式轨道底座板后浇带脱空对轨道结构与行车的影响[J]. 交通运输工程学报, 2019, 19(3): 71-78. doi: 10.19818/j.cnki.1671-1637.2019.03.008
引用本文: 杨荣山, 汪杰, 姜恒昌, 陈帅, 杜金鑫. CRTSⅡ型板式轨道底座板后浇带脱空对轨道结构与行车的影响[J]. 交通运输工程学报, 2019, 19(3): 71-78. doi: 10.19818/j.cnki.1671-1637.2019.03.008
YANG Rong-shan, WANG Jie, JIANG Heng-chang, CHEN Shuai, DU Jin-xin. Effects of post-pouring belt void of base slab on track structure and train operation of CRTSⅡ slab track[J]. Journal of Traffic and Transportation Engineering, 2019, 19(3): 71-78. doi: 10.19818/j.cnki.1671-1637.2019.03.008
Citation: YANG Rong-shan, WANG Jie, JIANG Heng-chang, CHEN Shuai, DU Jin-xin. Effects of post-pouring belt void of base slab on track structure and train operation of CRTSⅡ slab track[J]. Journal of Traffic and Transportation Engineering, 2019, 19(3): 71-78. doi: 10.19818/j.cnki.1671-1637.2019.03.008

CRTSⅡ型板式轨道底座板后浇带脱空对轨道结构与行车的影响

doi: 10.19818/j.cnki.1671-1637.2019.03.008
基金项目: 

国家自然科学基金项目 51778543

详细信息
    作者简介:

    杨荣山(1975-), 男, 河北容城人, 西南交通大学教授, 工学博士, 从事高速重载轨道结构与轮轨系统动力学研究

  • 中图分类号: U213.212

Effects of post-pouring belt void of base slab on track structure and train operation of CRTSⅡ slab track

More Information
  • 摘要: 在不间断行车情况下, 采用超高压水射流法对桥上CRTSⅡ型板式轨道底座板后浇带进行修复; 建立了CRTSⅡ型板式轨道结构静力计算模型, 分析了底座板后浇带不同脱空长度对钢轨、轨道板垂向位移与轨道板拉应力的影响; 建立了车辆-轨道耦合动力计算模型, 分析了底座板后浇带完全脱空长度为1.0 m时, 正常行车对轨道结构、行车安全与舒适性的影响。计算结果表明: 在1.5倍静轮载作用下, 随着后浇带脱空长度增大, 钢轨与轨道板垂向位移随之增大, 当底座板后浇带完全脱空长度为1.0 m时, 钢轨和轨道板的垂向位移均增大了0.03 mm, 说明完全脱空对其垂向位移影响较小; 后浇带脱空长度分别为0.7、0.8、0.9、1.0 m时, 轨道板的最大拉应力分别为0.96、1.12、1.18、1.22 MPa, 后浇带完全脱空时轨道板的最大拉应力小于其抗拉强度设计值1.96 MPa, 轨道板不会开裂; 列车运行速度为300 km·h-1, 后浇带完全脱空长度为1.0 m时, 钢轨和轨道板的最大垂向位移分别为0.91、0.32 mm, 均小于《高速铁路工程动态验收技术规范》 (TB 10761—2013) 中钢轨和轨道板垂向位移的基准值1.5、0.4 mm, 说明后浇带脱空后正常行车对轨道结构不会造成较大的影响; 后浇带完全脱空时, 轨道板垂向加速度约为正常时的3倍, 说明正常行车将会增大下部基础的振动强度。静、动力分析结果表明, 采用超高压水射流法修复底座板后浇带可允许列车以正常速度通行。

     

  • 图  1  静力计算模型

    Figure  1.  Static calculation model

    图  2  车辆-轨道垂向耦合动力学模型

    Figure  2.  Vertical coupling dynamics model of vehicle and track

    图  3  后浇带脱空平面(单位: mm)

    Figure  3.  Post-pouring belt void plan (unit: mm)

    图  4  钢轨最大垂向位移

    Figure  4.  Maximum vertical displacements of rail

    图  5  轨道板最大垂向位移

    Figure  5.  Maximum vertical displacement of track slab

    图  6  轨道板最大拉应力

    Figure  6.  Maximum tensile stress of track slab

    图  7  钢轨垂向位移

    Figure  7.  Vertical displacements of rail

    图  8  轨道板垂向位移

    Figure  8.  Vertical displacements of track slab

    图  9  轨道板垂向加速度

    Figure  9.  Vertical accelerations of track slab

    图  10  轮轨垂向力

    Figure  10.  Vertical forces of wheel-rail

    图  11  车体垂向加速度

    Figure  11.  Vibration accelerations of vehicle body

    表  1  参数取值

    Table  1.   Parameter values

    部件 参数 取值
    车辆 转向架中心距/m 17.5
    轴距/m 2.5
    车轮滚动圆直径/m 0.86
    车体空载质量/t 34.934
    车体重心位置/m 1.52
    车体点头转动惯量/ (t·m2) 1 711.8
    构架质量/t 3.3
    构架重心位置/m 0.51
    构架点头转动惯量/ (t·m2) 1.807
    轮对质量/t 1.78
    轮对点头转动惯量/ (t·m2) 0.118
    一系悬挂垂向刚度/ (kN·m-1) 1 176
    一系悬挂垂向阻尼/ (kN·s·m-1) 10
    二系悬挂垂向刚度/ (kN·m-1) 240
    二系悬挂垂向阻尼/ (kN·s·m-1) 20
    钢轨 弹性模量/MPa 2.06×105
    泊松比 0.3
    密度/ (kg·m-3) 7 850
    轨道板 尺寸(长度×宽度×厚度) /m 6.45×2.55×0.20
    弹性模量/MPa 3.55×104
    泊松比 0.2
    密度/ (kg·m-3) 2 500
    CA砂浆 弹性模量/MPa 7 000
    厚度/m 0.03
    底座板 尺寸(宽度×厚度) /m 2.95×0.20
    弹性模量/MPa 3.4×104
    泊松比 0.2
    密度/ (kg·m-3) 2 500
    下载: 导出CSV
  • [1] 何华武. 京津城际铁路科技创新[J]. 铁道建筑技术, 2009 (2): 1-12. doi: 10.3969/j.issn.1009-4539.2009.02.002

    HE Hua-wu. Science and technology innovations on Beijing-Tianjin Inter-City Railway[J]. Railway Construction Technology, 2009 (2): 1-12. (in Chinese). doi: 10.3969/j.issn.1009-4539.2009.02.002
    [2] 张鹏飞, 桂昊, 高亮, 等. 桥上CRTSⅡ型板式无砟轨道制动力影响因素分析[J]. 铁道工程学报, 2018 (7): 30-35, 108. doi: 10.3969/j.issn.1006-2106.2018.07.006

    ZHANG Peng-fei, GUI Hao, GAO Liang, et al. Analysis of influencing factors of braking force of CRTSⅡ slab track on bridge[J]. Journal of Railway Engineering Society, 2018 (7): 30-35, 108. (in Chinese). doi: 10.3969/j.issn.1006-2106.2018.07.006
    [3] 魏强, 赵国堂, 蔡小培. CRTSⅡ型板式轨道台后锚固结构研究[J]. 铁道学报, 2013, 35 (7): 90-95. doi: 10.3969/j.issn.1001-8360.2013.07.015

    WEI Qiang, ZHAO Guo-tang, CAI Xiao-pei. Study on anchor structure behind the abutment for slab track CRTSⅡ[J]. Journal of the China Railway Society, 2013, 35 (7): 90-95. (in Chinese). doi: 10.3969/j.issn.1001-8360.2013.07.015
    [4] 姜子清, 王继军, 江成. 桥上CRTSⅡ型板式无砟轨道伤损研究[J]. 铁道建筑, 2014 (6): 117-121. doi: 10.3969/j.issn.1003-1995.2014.06.35

    JIANG Zi-qing, WANG Ji-jun, JIANG Cheng. Research of CRTSⅡ slab ballastless track damage on bridge[J]. Railway Engineering, 2014 (6): 117-121. (in Chinese). doi: 10.3969/j.issn.1003-1995.2014.06.35
    [5] DONG Wei, ZHOU Xiang-ming, WU Zhi-min. A fracture mechanics-based method for prediction of cracking of circular and elliptical concrete rings under restrained shrinkage[J]. Engineering Fracture Mechanics, 2014, 131: 687-701. doi: 10.1016/j.engfracmech.2014.10.015
    [6] 朱乾坤. 高速铁路简支梁桥与CRTSⅡ型板式无砟轨道相互作用研究[D]. 长沙: 中南大学, 2013.

    ZHU Qian-kun. Interaction between simply supported beams and CRTSⅡslab ballastless track[D]. Changsha: Central South University, 2013. (in Chinese).
    [7] 郑先奇. 京沪高速铁路CRTSⅡ型板式无砟轨道长桥底座板施工技术[J]. 铁道标准设计, 2013 (2): 38-43. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201302012.htm

    ZHENG Xian-qi. Construction technology of base board of CRTSⅡ slab ballastless track upon long bridge on Beijing-Shanghai High-Speed Railway[J]. Railway Standard Design, 2013 (2): 38-43. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201302012.htm
    [8] HOSSAIN A B, WEISS J. Assessing residual stress development and stress relaxation in restrained concrete ring specimens[J]. Cement and Concrete Composites, 2004, 26 (5): 531-540. doi: 10.1016/S0958-9465(03)00069-6
    [9] 刘全青. CRTSⅡ型板式无砟轨道底座板施工关键技术[J]. 石家庄铁道大学学报(自然科学版), 2013, 26 (增): 229-232, 235. https://www.cnki.com.cn/Article/CJFDTOTAL-SJZT2013S1073.htm

    LIU Quan-qing. Key technology of CRTSⅡ slab ballastless track base plate construction[J]. Journal of Shijiazhuang Tiedao University (Natural Science), 2013, 26 (S): 229-232, 235. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SJZT2013S1073.htm
    [10] 张亚爽. 简支梁长桥上CRTSⅡ型板式无砟轨道底座板施工受力分析[D]. 成都: 西南交通大学, 2014.

    ZHANG Ya-shuang. Mechanic analysis for the concrete roadded of CRTSⅡ slab track during construction on the long bridge of simply supported beam[D]. Chengdu: Southwest Jiaotong University. (in Chinese).
    [11] 赵坪锐, 胡佳, 刘观. 长大桥梁上CRTSⅡ型板式轨道底座板施工工艺优化检算[J]. 铁道建筑, 2014 (6): 142-145. doi: 10.3969/j.issn.1003-1995.2014.06.41

    ZHAO Ping-rui, HU Jia, LIU Guan. Optimization calculation of construction technology of CRTSⅡ slab track base plate on long bridge[J]. Railway Engineering, 2014 (6): 142-145. (in Chinese). doi: 10.3969/j.issn.1003-1995.2014.06.41
    [12] 刘微. CRTSⅡ型板式无砟轨道支承层断裂影响及修复效果研究[D]. 北京: 北京交通大学, 2014.

    LIU Wei. Research on the influence and repairing effect of hydraulically bounded layer fracture of CRTSⅡ slab track[D]. Beijing: Beijing Jiaotong University, 2014. (in Chinese).
    [13] 黄传岳. CRTSⅡ型板式无砟轨道支承层斜裂伤损修复方法[J]. 铁道建筑, 2018, 58 (11): 139-141. doi: 10.3969/j.issn.1003-1995.2018.11.31

    HUANG Chuan-yue. Repairing method of supporting layer inclined crack damage of CRTSⅡ slab ballastless track[J]. Railway Engineering, 2018, 58 (11): 139-141. (in Chinese). doi: 10.3969/j.issn.1003-1995.2018.11.31
    [14] 吴绍利, 王鑫, 吴智强, 等. 高速铁路无砟轨道结构病害类型及快速维修方法[J]. 中国铁路, 2013 (1): 42-44. doi: 10.3969/j.issn.1001-683X.2013.01.009

    WU Shao-li, WANG Xin, WU Zhi-qiang, et al. High-speed railway ballastless track structure disease type and rapid maintenance method[J]. Chinese Railways, 2013 (1): 42-44. (in Chinese). doi: 10.3969/j.issn.1001-683X.2013.01.009
    [15] 景璞, 李飞. CRTSⅡ型板式无砟轨道病害修补方案研究[J]. 铁道技术监督, 2017, 45 (11): 22-29. doi: 10.3969/j.issn.1006-9178.2017.11.008

    JING Pu, LI Fei. Study on patching scheme of CRTSⅡ slab ballastless track diseases[J]. Railway Quality Control, 2017, 45 (11): 22-29. (in Chinese). doi: 10.3969/j.issn.1006-9178.2017.11.008
    [16] ZHAO Jing, SONG Ting. Fiber-reinforced rapid repair material for concrete pavement[J]. Advanced Materials Research, 2010, 168-170: 870-874. doi: 10.4028/www.scientific.net/AMR.168-170.870
    [17] 汪梨园. 高速铁路运营期间CRTSⅡ型板式无砟轨道底座板断裂修复技术[J]. 铁道建筑技术, 2014 (7): 44-47, 74. doi: 10.3969/j.issn.1009-4539.2014.07.011

    WANG Li-yuan. Repair technologies for the base plate fracture of CRTSⅡ slab ballastless track in the operation of high-speed railway[J]. Railway Construction Technology, 2014 (7): 44-47, 74. (in Chinese). doi: 10.3969/j.issn.1009-4539.2014.07.011
    [18] 吕建华, 杨冀超, 贾金民, 等. 高速铁路CRTSⅡ型板式无砟轨道底座板修复技术[J]. 中国铁路, 2014 (4): 77-80. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201404018.htm

    LYU Jian-hua, YANG Ji-chao, JIA Jin-min, et al. High-speed railway CRTSⅡ ballastless track base plate repair technology[J]. Chinese Railways, 2014 (4): 77-80. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201404018.htm
    [19] 柴强. 高速铁路CRTSⅡ型板式无砟轨道养护维修技术研究[D]. 北京: 中国铁道科学研究院, 2014.

    CHAI Qiang. Research on maintenance techniques of CRTSⅡ slab ballastless track system on high speed railway[D]. Beijing: China Academy of Railway Sciences, 2014. (in Chinese).
    [20] 周明岩. 严寒地区高速铁路板式无砟轨道养护维修技术研究[D]. 北京: 中国铁道科学研究院, 2017.

    ZHOU Ming-yan. Study on maintenance and repair technology of slab track of high speed railway in cold area[D]. Beijing: China Academy of Railway Sciences, 2017. (in Chinese).
    [21] BODNÁROVÁ L, SITEK L, HELA R, et al. New potential of highspeed water jet technology for renovating concrete structures[J]. Slovak Journal of Civil Engineering, 2011, 19 (2): 1-7. doi: 10.2478/v10189-011-0006-z
    [22] MOMBER A, LOUIS H. On the behaviour of concrete under water jet impingement[J]. Materials and Structures, 1994, 27 (167): 153-156.
    [23] WU Gang, SONG Jia-hui, HOU Ke-bang, et al. Application of high-pressure water jet in mine[J]. Advanced Materials Research, 2014, 1033/1034: 1323-1326. doi: 10.4028/www.scientific.net/AMR.1033-1034.1323
    [24] TIAN Chang-liu, CHENG Xue-li, WANG Wei. Experimental study on rock breaking with impacting water jet by modulation of chaos[J]. Advanced Materials Research, 2012, 535-537: 1751-1754.
    [25] HAM Y B, KWON S K, NOH J H, et al. Development of road stripe removing equipment using high-pressure water jet[J]. Automation in Construction, 2006, 15 (5): 578-588.
    [26] CHEN Hai-long, LI Zhao-min, GAO Zhi-han, et al. Numerical investigation of rock breaking mechanisms by high pressure water jet[J]. Procedia Engineering, 2015, 126: 295-299.
    [27] 陈俊. 超高性能混凝土(UHPC) 高压水射流凿毛处理及修补材料研究[D]. 长沙: 湖南大学, 2015.

    CHEN Jun. Research on artificial chiseling with high pressure water jet and repair materials of ultra-high performance concrete[D]. Changsha: Hunan University, 2015. (in Chinese).
    [28] ZHAI Wan-ming, WANG Kai-yun, CAI Cheng -biao. Fundamentals of vehicle-track coupled dynamics[J]. Vehicle System Dynamics, 2009, 47 (11): 1349-1376.
    [29] 蔡成标. 无碴轨道动力学理论及应用[J]. 西南交通大学学报, 2007, 42 (3): 255-261. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT200703000.htm

    CAI Cheng-biao. Dynamics of ballastless track and its application[J]. Journal of Southwest Jiaotong University, 2007, 42 (3): 255-261. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT200703000.htm
    [30] 朱胜阳. 高速铁路无砟轨道结构伤损行为及其对动态性能的影响[D]. 成都: 西南交通大学, 2015.

    ZHU Sheng-yang. Damage behavior of high-speed railway ballastless track and its effect on structure dynamic performance[D]. Chengdu: Southwest Jiaotong University, 2015. (in Chinese).
    [31] 任娟娟, 徐家铎, 田根源, 等. 客货共线无砟轨道轮轨力统计特征研究[J]. 工程力学, 2018, 35 (2): 239-248. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201802029.htm

    REN Juan-juan, XU Jia-duo, TIAN Gen-yuan, et al. Field test and statistical characteristics of wheel-rail force for slab track with passenger and freight traffic[J]. Engineering Mechanics, 2018, 35 (2): 239-248. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201802029.htm
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  872
  • HTML全文浏览量:  229
  • PDF下载量:  376
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-19
  • 刊出日期:  2019-06-25

目录

    /

    返回文章
    返回