留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航空发动机多级叶盘-轴系统扭转耦合振动特性

徐自力 周子宣

徐自力, 周子宣. 航空发动机多级叶盘-轴系统扭转耦合振动特性[J]. 交通运输工程学报, 2019, 19(3): 79-88. doi: 10.19818/j.cnki.1671-1637.2019.03.009
引用本文: 徐自力, 周子宣. 航空发动机多级叶盘-轴系统扭转耦合振动特性[J]. 交通运输工程学报, 2019, 19(3): 79-88. doi: 10.19818/j.cnki.1671-1637.2019.03.009
XU Zi-li, ZHOU Zi-xuan. Torsional coupled vibration characteristics of multi-stage blade disc-shaft system of aeroengine[J]. Journal of Traffic and Transportation Engineering, 2019, 19(3): 79-88. doi: 10.19818/j.cnki.1671-1637.2019.03.009
Citation: XU Zi-li, ZHOU Zi-xuan. Torsional coupled vibration characteristics of multi-stage blade disc-shaft system of aeroengine[J]. Journal of Traffic and Transportation Engineering, 2019, 19(3): 79-88. doi: 10.19818/j.cnki.1671-1637.2019.03.009

航空发动机多级叶盘-轴系统扭转耦合振动特性

doi: 10.19818/j.cnki.1671-1637.2019.03.009
基金项目: 

国家自然科学基金项目 51675406

详细信息
    作者简介:

    徐自力(1967-), 男, 山西运城人, 西安交通大学教授, 工学博士, 从事结构强度与振动研究

    通讯作者:

    周子宣(1993-), 男, 河北秦皇岛人, 西安交通大学工学硕士研究生

  • 中图分类号: V231.96

Torsional coupled vibration characteristics of multi-stage blade disc-shaft system of aeroengine

More Information
  • 摘要: 针对多级叶盘转子结构, 考虑多级叶片弯曲变形和轴扭转变形耦合作用, 引入叶片离心刚化作用, 建立了包含多叶片、2级叶盘和轴的耦合振动模型; 应用哈密顿原理推导了多级叶盘-轴耦合振动微分方程组, 通过数值积分方法得到了系统质量矩阵与刚度矩阵, 进而求解出系统耦合模态; 研究了叶盘固有频率、叶片长度、叶盘间距、叶片扭转角对振动特征的影响。研究结果表明: 2级叶盘-轴系耦合振动包含3类耦合模态, 各阶模态频率以叶盘固有频率为边界相互分离; 叶片长度小于1 m时, 耦合第1、2阶频率受轴半径的影响较大, 叶片长度超过1 m后, 耦合第1、2阶频率受叶片长度的影响较大; 在系统转速为2 000 rad·s-1时, 在不同叶盘间距下, 耦合的3阶模态频率变化幅度分别降低5、3、7 Hz; 转速-频率曲线存在明显的频率转向特征, 叶片扭转角增加60°, 转向区域提高500 rad·s-1; 2级叶盘系统会产生不同于单级叶盘的耦合模态, 短叶片与长叶片均会对耦合频率产生显著影响; 叶片扭转角与叶盘间距的变化会使耦合区域移动, 从而降低可能发生的危险共振。

     

  • 图  1  多级叶盘结构

    Figure  1.  Structure of multi-stage blade disc

    图  2  单级轮盘-叶片模型

    Figure  2.  Single-stage disc-blade model

    图  3  叶片扭转角

    Figure  3.  Blade twist angle

    图  4  两级叶盘-轴耦合模型

    Figure  4.  Two-stage blade disc-shaft coupling model

    图  5  计算流程

    Figure  5.  Calculating process

    图  6  归一化2级叶盘-轴系耦合振型

    Figure  6.  Normalized coupling vibration mode of two-stage blade disc-shaft system

    图  7  耦合频率随1号叶盘固有频率变化规律

    Figure  7.  Variation laws of coupling frequency with natural frequency of 1st blade disc

    图  8  耦合频率随1号叶盘叶片长度变化规律

    Figure  8.  Variation laws of coupling frequency with blade length of 1st blade disc

    图  9  叶盘间距对耦合频率的影响

    Figure  9.  Influence of blade disc spacing on coupling frequency

    图  10  耦合频率随转速变化规律

    Figure  10.  Changing rules of coupling frequency with rotation speed

    表  1  模型参数

    Table  1.   Model parameters

    参数 取值
    轴半径/m 0.4
    轴长度/m 1
    叶片厚度/m 0.01
    叶片宽度/m 0.2
    叶片长度/m 1
    叶盘半径/m 0.5
    叶盘厚度/m 0.2
    叶盘间距/m 0.6
    弹性模量/GPa 200
    材料密度/ (kg·m-3) 7 800
    叶片数 25
    叶盘级数 2
    叶片扭转角/ (°) 15
    切变模量/GPa 75
    下载: 导出CSV

    表  2  模态频率与振型

    Table  2.   Frequencies and shapes of modes

    阶次 模态频率/Hz 模态振型
    1 25.59 耦合第1阶模态
    2~51 28.77 叶片1阶模态
    52 35.78 耦合第2阶模态
    53 59.66 耦合第3阶模态
    54~103 66.82 叶片2阶模态
    下载: 导出CSV

    表  3  本文方法与有限元方法比较

    Table  3.   Comparison between proposed method and FEM

    阶次 有限元方法的模态频率/Hz 本文方法的模态频率/Hz 误差/%
    1 25.47 25.69 0.86
    2~51 28.42~28.63 28.77 0.75
    52 35.47 35.78 0.92
    53 59.32 59.96 1.07
    54~103 66.06~66.37 66.82 0.68
    下载: 导出CSV
  • [1] 张春宜, 刘令君, 孙旭东, 等. 基于双重响应面法的航空发动机叶片振动概率分析[J]. 推进技术, 2017, 38 (4): 918-924. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201704024.htm

    ZHANG Chun-yi, LIU Ling-jun, SUN Xu-dong, et al. Vibration probability analysis of aero-engine blades based on double response surface method[J]. Journal of Propulsion Technology, 2017, 38 (4): 918-924. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201704024.htm
    [2] 李静, 孙强, 李春旺, 等. 某型航空发动机压气机叶片振动疲劳寿命研究[J]. 应用力学学报, 2011, 28 (2): 189-193. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201102018.htm

    LI Jing, SUN Qiang, LI Chun-wang, et al. Study on vibration fatigue life for aero-engine compressor blade[J]. Chinese Journal of Applied Mechanics, 2011, 28 (2): 189-193. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201102018.htm
    [3] 王美令, 陈果. 转子系统临界转速计算方法[J]. 交通运输工程学报, 2009, 9 (6): 59-63. doi: 10.3969/j.issn.1671-1637.2009.06.012

    WANG Mei-ling, CHEN Guo. Computational method of critical speed for rotor-bearing system[J]. Journal of Traffic and Transportation Engineering, 2009, 9 (6): 59-63. (in Chinese). doi: 10.3969/j.issn.1671-1637.2009.06.012
    [4] 王延荣, 田爱梅. 叶/盘结构振动分析中几个问题的探讨[J]. 推进技术, 2002, 23 (3): 233-236. doi: 10.3321/j.issn:1001-4055.2002.03.016

    WANG Yan-rong, TIAN Ai-mei. Several issues in the implementation of vibration analysis of bladed disk[J]. Journal of Propulsion Technology, 2002, 23 (3): 233-236. (in Chinese). doi: 10.3321/j.issn:1001-4055.2002.03.016
    [5] 王立刚, 曹登庆, 胡超, 等. 叶片振动对转子-轴承系统动力学行为的影响[J]. 哈尔滨工程大学学报, 2007, 28 (3): 320-325. doi: 10.3969/j.issn.1006-7043.2007.03.016

    WANG Li-gang, CAO Deng-qing, HU Chao, et al. Effect of the blade vibration on the dynamical behaviors of a rotor-bearing system[J]. Journal of Harbin Engineering University, 2007, 28 (3): 320-325. (in Chinese). doi: 10.3969/j.issn.1006-7043.2007.03.016
    [6] AL-BEDOOR B O. Natural frequencies of coupled blade-bending and shaft-torsional vibrations[J]. Shock and Vibration, 2007, 14 (1): 65-80. doi: 10.1155/2007/506165
    [7] 商大中, 曹承佳, 李宏亮. 考虑刚体运动与弹性运动耦合影响的旋转叶片振动有限元分析[J]. 计算力学学报, 2000, 17 (3): 332-338. doi: 10.3969/j.issn.1007-4708.2000.03.013

    SHANG Da-zhong, CAO Cheng-jia, LI Hong-liang. Finite element method of rotating blade with considering of the coupling of rigid body motion and elastic motion[J]. Chinese Journal of Computational Mechanics, 2000, 17 (3): 332-338. (in Chinese). doi: 10.3969/j.issn.1007-4708.2000.03.013
    [8] 李克安, 林左鸣, 杨胜群, 等. 航空发动机转子叶片振动方程及其频率计算[J]. 航空学报, 2013, 34 (12): 2733-2739. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201312010.htm

    LI Ke-an, LIN Zuo-ming, YANG Sheng-qun, et al. Vibration equation and frequency computation of an aero-engine rotor blade[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34 (12): 2733-2739. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201312010.htm
    [9] 徐自力, 谢浩, PARK J P, 等. 成组叶片振动特性的三维数值模拟及实验研究[J]. 西安交通大学学报, 2003, 37 (7): 678-682. doi: 10.3321/j.issn:0253-987X.2003.07.005

    XU Zi-li, XIE Hao, PARK J P, et al. Three-dimensional numerical simulation and experimental study on vibratory modes of group blades[J]. Journal of Xi'an Jiaotong University, 2003, 37 (7): 678-682. (in Chinese). doi: 10.3321/j.issn:0253-987X.2003.07.005
    [10] 徐自力, 窦柏通, 范小平, 等. 基于分层模态综合法的大型汽轮发电机组转子-末级叶片耦合系统扭转振动分析[J]. 动力工程学报, 2014, 34 (12): 938-944. https://www.cnki.com.cn/Article/CJFDTOTAL-DONG201412003.htm

    XU Zi-li, DOU Bai-tong, FAN Xiao-ping, et al. Coupled torsional vibration analysis of shaft-last stage blade system in large turbo-generator units using CMS method with nested substructures[J]. Journal of Chinese Society of Power Engineering, 2014, 34 (12): 938-944. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DONG201412003.htm
    [11] LEE H, SONG J S, CHA S J, et al. Dynamic response of coupled shaft torsion and blade bending in rotor blade system[J]. Journal of Mechanical Science and Technology, 2013, 27 (9): 2585-2597. doi: 10.1007/s12206-013-0702-x
    [12] MA Hui, LU Yang, WU Zhi-yuan, et al. Vibration response analysis of a rotational shaft-disk-blade system with blade-tip rubbing[J]. International Journal of Mechanical Sciences, 2016, 107: 110-125. doi: 10.1016/j.ijmecsci.2015.12.026
    [13] HUANG Wen-hu. Free and forced vibration of closely coupled turbomachinery blades[J]. AIAA Journal, 1981, 19 (7): 918-924. doi: 10.2514/3.51020
    [14] MIKRUT P L, MORRIS S C, CAMERON J D. Compressor blade vibration measurements using blade image velocimetry[J]. Journal of Vibration and Acoustics, 2015, 137 (6): 1-8.
    [15] 杨辉, 洪嘉振, 余征跃. 刚柔耦合建模理论的实验验证[J]. 力学学报, 2003, 35 (2): 253-256. doi: 10.3321/j.issn:0459-1879.2003.02.022

    YANG Hui, HONG Jia-zhen, YU Zheng-yue. Experimental validation on modeling theory for rigid-flexible coupling system[J]. Acta Mechanica Sinica, 2003, 35 (2): 253-256. (in Chinese). doi: 10.3321/j.issn:0459-1879.2003.02.022
    [16] 郑彤, 章定国, 廖连芳, 等. 航空发动机叶片刚柔耦合动力学分析[J]. 机械工程学报, 2014, 50 (23): 42-49. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201423008.htm

    ZHENG Tong, ZHANG Ding-guo, LIAO Lian-fang, et al. Rigid-flexible coupling dynamic analysis of aero-engine blades[J]. Journal of Mechanical Engineering, 2014, 50 (23): 42-49. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201423008.htm
    [17] 寇海军, 张俊红, 林杰威. 航空发动机风扇叶片振动特性分析[J]. 西安交通大学学报, 2014, 48 (11): 109-114. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201411019.htm

    KOU Hai-jun, ZHANG Jun-hong, LIN Jie-wei. Aero-engine fan blade vibration characteristic analysis[J]. Journal of Xi'an Jiaotong University, 2014, 48 (11): 109-114. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201411019.htm
    [18] 杨建刚, 高亹. 大型旋转机械叶片-轴弯扭耦合振动问题的研究[J]. 动力工程, 2003, 23 (4): 2569-2573. https://www.cnki.com.cn/Article/CJFDTOTAL-DONG200304018.htm

    YANG Jian-gang, GAO Wei. Research on the coupled blade-bending and shaft-torsion vibration of rotating machinery[J]. Power Engineering, 2003, 23 (4): 2569-2573. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DONG200304018.htm
    [19] BAB S, KHADEM S E, ABBASI A, et al. Dynamic stability and nonlinear vibration analysis of a rotor system with flexible/rigid blades[J]. Mechanism and Machine Theory, 2016, 105: 633-653. doi: 10.1016/j.mechmachtheory.2016.07.026
    [20] OKABE A, KUDO T, YODA H, et al. Rotor-blade coupled vibration analysis by measuring modal parameters of actual rotor[C]//ASME. Proceedings of Turbo Expo 2009: Power for Land, Sea, and Air. New York: ASME, 2009: 803-812.
    [21] OKABE A, SHIOHATA K, KUDO T, et al. Rotor-blade coupled torsional vibration analysis using modal parameters based on fem analyses and experiments[C]//ASME. Proceedings of ASME 2010 International Mechanical Engineering Congress and Exposition. New York: ASME, 2010: 139-147.
    [22] YANG C H, HUANG S C. Coupling vibrations in rotating shaft-disk-blades system[J]. Journal of Vibration and Acoustics, 2007, 129 (1): 48-57. doi: 10.1115/1.2221328
    [23] CHIU Y J, CHEN D Z. The coupled vibration in a rotating multi-disk rotor system[J]. International Journal of Mechanical Sciences, 2011, 53 (1): 1-10. doi: 10.1016/j.ijmecsci.2010.10.001
    [24] KUDO T, SHIOHATA K, MATSUSHITA O, et al. Experimental study of torsional-bending coupled vibration of a rotor system with a bladed disk[C]//ASME. Proceedings of the ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. New York: ASME, 2013: 1-10.
    [25] ZHOU Shui-ting, CHIU Yi-jui, YU Guo-fei, et al. An assumed mode method and finite element method investigation of the coupled vibration in a flexible-disk rotor system with lacing wires[J]. Journal of Mechanical Science and Technology, 2017, 31 (2): 577-586. doi: 10.1007/s12206-017-0110-8
    [26] LIM H S, CHUNG J, YOO H H. Modal analysis of a rotating multi-packet blade system[J]. Journal of Sound and Vibration, 2009, 325 (3): 513-531. doi: 10.1016/j.jsv.2009.03.042
    [27] LIM H S, HONG H Y. Modal analysis of a multi-blade system undergoing rotational motion[J]. Journal of Mechanical Science and Technology, 2009, 23 (8): 2051-2058. doi: 10.1007/s12206-009-0431-3
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  929
  • HTML全文浏览量:  293
  • PDF下载量:  395
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-13
  • 刊出日期:  2019-06-25

目录

    /

    返回文章
    返回