留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于刚度等效模型的减重孔板结构快速分析方法

那景新 任俊铭 谭伟 陈立军

那景新, 任俊铭, 谭伟, 陈立军. 基于刚度等效模型的减重孔板结构快速分析方法[J]. 交通运输工程学报, 2019, 19(3): 89-99. doi: 10.19818/j.cnki.1671-1637.2019.03.010
引用本文: 那景新, 任俊铭, 谭伟, 陈立军. 基于刚度等效模型的减重孔板结构快速分析方法[J]. 交通运输工程学报, 2019, 19(3): 89-99. doi: 10.19818/j.cnki.1671-1637.2019.03.010
NEI Jing-xin, REN Jun-ming, TAN Wei, CHEN Li-jun. Rapid analysis method of weight-reduced orifice plate structure based on stiffness equivalence model[J]. Journal of Traffic and Transportation Engineering, 2019, 19(3): 89-99. doi: 10.19818/j.cnki.1671-1637.2019.03.010
Citation: NEI Jing-xin, REN Jun-ming, TAN Wei, CHEN Li-jun. Rapid analysis method of weight-reduced orifice plate structure based on stiffness equivalence model[J]. Journal of Traffic and Transportation Engineering, 2019, 19(3): 89-99. doi: 10.19818/j.cnki.1671-1637.2019.03.010

基于刚度等效模型的减重孔板结构快速分析方法

doi: 10.19818/j.cnki.1671-1637.2019.03.010
基金项目: 

国家自然科学基金项目 51775230

详细信息
    作者简介:

    那景新(1957-), 男, 黑龙江哈尔滨人, 吉林大学教授, 从事车身结构设计理论与轻量化技术研究

    通讯作者:

    陈立军(1960-), 男, 吉林延吉人, 吉林大学副研究员

  • 中图分类号: U270.2

Rapid analysis method of weight-reduced orifice plate structure based on stiffness equivalence model

More Information
  • 摘要: 为了能够更有效率地对减重孔板结构进行计算分析, 提出一种快速分析方法; 研究了减重孔板结构模型与平面板结构模型间的一般刚度等效关系, 建立了减重孔板孔径、孔距与相应平面板等效杨氏模量、等效板厚间的关系表达式, 以等效平面板结构模型代替原孔板结构模型进行变形分析; 将局部节点位移施加到相应目标孔位模型上, 计算了目标孔位区域的应力分布; 结合试验与仿真验证了方法的准确性; 通过对某实际减重孔板结构施加不同载荷, 对刚度等效关系的稳定性进行了验证; 通过某车体底架带孔板结构实例, 对方法应用于实际工程中的有效性进行了验证。分析结果表明: 与试验结果相比, 快速分析方法仿真变形最大误差约为3%, 应变的最大误差约为5%;不同载荷下的等效杨氏模量偏差约为2.5%, 等效板厚的偏差约为1.3%;快速分析方法对变形与局部应力的平均计算误差小于6.7%, 计算时间缩短了约50%。可见, 快速分析方法可以替代传统方法对减重孔板结构进行性能分析。

     

  • 图  1  抽取的矩形孔板

    Figure  1.  Extracted rectangular orifice plate

    图  2  孔径为5、6 mm的矩形孔板应力结果

    Figure  2.  Rectangular orifice plate stress results with apertures of 5 and 6 mm

    图  3  孔径为7、8 mm的矩形孔板应力结果

    Figure  3.  Rectangular orifice plate stress results with apertures of 7 and 8 mm

    图  4  孔板与平面板边界节点位置

    Figure  4.  Positions of orifice plate and planar plate boundary nodes

    图  5  变形测试现场

    Figure  5.  Deformation test site

    图  6  有限元变形结果

    Figure  6.  Finite element deformation result

    图  7  DIC试验现场

    Figure  7.  DIC test site

    图  8  目标孔位测点

    Figure  8.  Target hole measuring points

    图  9  底架减重孔板结构

    Figure  9.  Structure of chasis weight-reduced orifice plate

    图  11  在2种工况下模型的变形

    Figure  11.  Deformations of models under two conditions

    图  10  等效平面板与底架减重孔板结构模型

    Figure  10.  Structure models of equivalence planar plate and chasis weight-reduced orifice plate

    图  12  孔板分块方式与目标孔位分块区域

    Figure  12.  Orifice plate block method and target hole block area

    图  13  平面板分块方式与相应分块区域

    Figure  13.  Planar plate block method and corresponding block area

    图  14  目标孔分块区域的有限元模型

    Figure  14.  Finite element model of target hole block area

    图  15  快速分析方法得到的目标孔区域应力

    Figure  15.  Target hole region stress obtained by rapid analysis method

    图  16  传统方法得到的目标孔区域应力

    Figure  16.  Target hole region stress obtained by traditional method

    表  1  孔径与孔距组合

    Table  1.   Aperture and hole distance combinations mm

    孔径 5 5 5 6 6 6 7 7 7 8 8 8
    孔距 20 25 30 20 25 30 20 25 30 20 25 30
    下载: 导出CSV

    表  2  材料参数

    Table  2.   Material parameters

    参数 密度/ (kg·m-3) 泊松比 弹性模量/MPa 屈服极限/MPa
    数值 7 800 0.3 2.06×105 235
    下载: 导出CSV

    表  3  矩形平面板平均位移与平均转角

    Table  3.   Average displacements and angles of rectangular planar plates

    平面板序号 杨氏模量/1011 Pa 板厚/mm 平均位移/10-7 mm 平均转角/rad
    1 1.0 1.0 3.006 3.563
    2 1.0 1.5 2.004 1.056
    3 1.0 2.0 1.503 0.445
    4 1.0 2.5 1.203 0.228
    5 1.5 1.0 2.004 2.376
    6 1.5 1.5 1.336 0.704
    7 1.5 2.0 1.002 0.297
    8 1.5 2.5 0.802 0.152
    9 2.0 1.0 1.503 1.782
    10 2.0 1.5 1.002 0.528
    11 2.0 2.0 0.752 0.223
    12 2.0 2.5 0.601 0.114
    13 2.5 1.0 1.202 1.425
    14 2.5 1.5 0.802 0.422
    15 2.5 2.0 0.601 0.178
    16 2.5 2.5 0.481 0.091
    下载: 导出CSV

    表  4  孔板的等效杨氏模量与板厚

    Table  4.   Equivalent Young's moduli and thicknesses of orifice plates

    组合序号 孔径/mm 孔距/mm 等效杨氏模量/1011 Pa 等效板厚/mm
    1 5 20 1.234 2.06
    2 5 25 1.474 2.05
    3 5 30 1.714 2.03
    4 6 20 0.998 2.06
    5 6 25 1.305 2.06
    6 6 30 1.502 2.05
    7 7 20 0.747 2.07
    8 7 25 1.115 2.06
    9 7 30 1.322 2.06
    10 8 20 0.497 2.07
    11 8 25 0.929 2.07
    12 8 30 1.209 2.06
    下载: 导出CSV

    表  5  不同测点3个方向的应变

    Table  5.   Strains in three directions of different measuring points

    测点 方法 ε1/10-4 ε2/10-5 ε3/10-6
    1 DIC试验 -3.99 8.67 9.70
    快速分析方法 -3.67 8.55 10.20
    2 DIC试验 -0.28 -9.41 1.02
    快速分析方法 -0.31 -9.38 1.03
    3 DIC试验 -3.99 8.71 -11.40
    快速分析方法 -3.69 8.68 -10.50
    4 DIC试验 -0.26 -7.81 -1.23
    快速分析方法 -0.31 -7.88 -1.18
    下载: 导出CSV

    表  6  不同力系下的等效杨氏模量与等效板厚

    Table  6.   Equivalent Young's moduli and thicknesses under different force systems

    力系 拉力/N 弯矩/ (N·m) 等效杨氏模量/1011 Pa 等效板厚/mm
    1 3 3 1.58 2.06
    2 6 6 1.55 2.05
    3 9 9 1.60 2.04
    4 12 12 1.64 2.03
    5 15 15 1.61 2.04
    下载: 导出CSV

    表  7  不同载荷下的垂向挠度

    Table  7.   Vertical deflections under different loads

    工况 外载荷/N 模型 挠度/cm 误差/%
    1 20 底架减重孔板 13.40 6.7
    等效平面板 12.50
    2 4 底架减重孔板 2.68 6.6
    等效平面板 2.50
    下载: 导出CSV

    表  8  快速分析方法与传统方法应力对比

    Table  8.   Stress comparison between rapid analysis method and traditional method

    孔位序号 快速分析方法得到最大应力/1011 Pa 传统方法得到最大应力/1011 Pa 误差率/% 平均误差率/%
    1 1.58 1.63 3.1 4.5
    2 1.72 1.65 4.2
    3 1.79 1.86 3.7
    4 1.76 1.64 7.3
    5 1.73 1.66 4.2
    下载: 导出CSV
  • [1] 洪求才, 刘卫国, 周大永. 某款轿车变型开发中车身结构轻量化的研究[J]. 汽车工程, 2017, 39 (2): 232-236. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201702018.htm

    HONG Qiu-cai, LIU Wei-guo, ZHOU Da-yong. A study on body structure lightweighting in the transfiguration development of a sedan[J]. Automotive Engineering, 2017, 39 (2): 232-236. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201702018.htm
    [2] 毛爱华. 纯电动大客车骨架结构轻量化多目标优化设计[D]. 长春: 吉林大学, 2015.

    MAO Ai-hua. Multi-objective optimization design for electric bus body skeleton structure lightweight[D]. Changchun: Jilin University, 2015. (in Chinese).
    [3] 徐力, 刘荣桂, 韦芳芳. 开孔板的有限元分析[J]. 江苏大学学报(自然科学版), 2002, 23 (5): 28-30. doi: 10.3969/j.issn.1671-7775.2002.05.007

    XU Li, LIU Rong-gui, WEI Fang-fang. Analysis of plates with openings by finite element method[J]. Journal of Jiangsu University (Natural Science), 2002, 23 (5): 28-30. (in Chinese). doi: 10.3969/j.issn.1671-7775.2002.05.007
    [4] 王登峰, 卢放. 基于多学科优化设计方法的白车身轻量化[J]. 吉林大学学报(工学版), 2015, 45 (1): 29-37. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201501005.htm

    WANG Deng-feng, LU Fang. Body-in-white lightweight based on multidisciplinary design optimization[J]. Journal of Jilin University (Engineering and Technology Edition), 2015, 45 (1): 29-37. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201501005.htm
    [5] 兰凤崇, 庄良飘, 钟阳, 等. 乘用车车身结构轻量化设计技术研究与实践[J]. 汽车工程, 2010, 32 (9): 763-768, 773. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201009005.htm

    LAN Feng-chong, ZHUANG Liang-piao, ZHONG Yang, et al. Study and practice of car body structure lightweight design[J]. Automotive Engineering, 2010, 32 (9): 763-768, 773. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201009005.htm
    [6] 谭祖龙. 圆形孔口多孔板的有限元分析[J]. 现代制造技术与装备, 2017 (3): 78, 83. https://www.cnki.com.cn/Article/CJFDTOTAL-SDJI201703039.htm

    TAN Zu-long. Finite element analysis of circular orifice plate[J]. Modern Manufacturing Technology and Equipment, 2017 (3): 78, 83. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SDJI201703039.htm
    [7] 唐慧敏, 吴思, 张惠敏. 拓扑优化几何清理及网格划分技巧[J]. 中国战略新兴产业, 2017 (16): 116. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLXC201716092.htm

    TANG Hui-min, WU Si, ZHANG Hui-min. Topology optimization geometry cleanup and meshing techniques[J]. China Strategic Emerging Industry, 2017 (16): 116. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZLXC201716092.htm
    [8] 李环, 邓洁, 张琪, 等. 基于DOE的某异型喷管结构优化减重研究[J]. 南京航空航天大学学报, 2017, 49 (增): 40-44. https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK2017S1008.htm

    LI Huan, DENG Jie, ZHANG Qi, et al. Study on structural optimization and mass reduction of a shaped nozzle based on DOE[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2017, 49 (S): 40-44. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK2017S1008.htm
    [9] 李百建, 朱良生, 符锌砂. 基于刚度等效的钢波纹板叠合梁结构数值分析[J]. 华南理工大学学报(自然科学版), 2018, 46 (12): 111-120. doi: 10.3969/j.issn.1000-565X.2018.12.014

    LI Bai-jian, ZHU Liang-sheng, FU Xin-sha. Numerical analysis of corrugated steel plate-composite beam structure based on equivalent stiffness method[J]. Journal of South China University of Technology (Natural Science Edition), 2018, 46 (12): 111-120. (in Chinese). doi: 10.3969/j.issn.1000-565X.2018.12.014
    [10] 冯岩, 杜国君, 赵卫东. 构造上正交各向异性凹凸板等效刚度的研究[J]. 应用力学学报, 2018, 35 (4): 900-905. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201804034.htm

    FENG Yan, DU Guo-jun, ZHAO Wei-dong. Equivalent stiffness research of the construction orthogonal anisotropy truss core panel[J]. Chinese Journal of Applied Mechanics, 2018, 35 (4): 900-905. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201804034.htm
    [11] 李百建, 符锌砂, 朱良生. 基于刚度等效的钢波纹板-减压板力学特性研究[J]. 华南理工大学学报(自然科学版), 2018, 46 (9): 131-139. https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG201809019.htm

    LI Bai-jian, FU Xin-sha, ZHU Liang-sheng. Research on mechanical properties of corrugated steel plate with relieving slab based on equivalent stiffness[J]. Journal of South China University of Technology (Natural Science Edition), 2018, 46 (9): 131-139. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG201809019.htm
    [12] TANAKA S, YANAGIHARA D, YASUOKA A, et al. Evaluation of ultimate strength of stiffened panels under longitudinal thrust[J]. Marine Structures, 2014, 36: 21-50. doi: 10.1016/j.marstruc.2013.11.002
    [13] LI Yan, LI Xin-fu, MA Shi-wang. Groundstates for Kirchhoff-type equations with Hartree-type nonlinearities[J]. Results in Mathematics, 2019, 74 (1): 1-26. doi: 10.1007/s00025-018-0927-1
    [14] SUN Ling-yu, LENG Ding-xin, SUN Juan-juan, et al. An equivalent stiffness (ES) method for initial design of tube-based energy absorbers under lateral quasi-static compression[J]. Journal of Mechanical Science and Technology, 2015, 29 (2): 637-646. doi: 10.1007/s12206-015-0123-0
    [15] DUAN Zun-yi, YAN Jun, LEE I, et al. A two-step optimization scheme based on equivalent stiffness parameters for forcing convexity of fiber winding angle in composite frames[J]. Structural and Multidisciplinary Optimization, 2019, 59 (2): 2111-2129.
    [16] SUN Hong-lei, YANG Yi-min, SHI Li, et al. The equivalent stiffness of a saturated poroelastic halfspace interacting with an infinite beam under a moving point load[J]. Soil Dynamics and Earthquake Engineering, 2018, 107: 83-95. doi: 10.1016/j.soildyn.2018.01.022
    [17] SUN J D, TIAN E, LEI H, et al. The impact of helical gear parameters based on axial meshing transmission on Swash plate pulse CVT characteristics[J]. Applied Mechanics and Materials, 2012, 101/102: 224-227.
    [18] FENG Xiong, WANG Deng-feng, CHEN Shu-ming, et al. Multi-objective lightweight and crashworthiness optimization for the side structure of an automobile body[J]. Structural and Multidisciplinary Optimization, 2018, 58 (4): 1823-1843. doi: 10.1007/s00158-018-1986-3
    [19] SAKUNDARINI N, TAHA Z, ABDUL-RASHID S H, et al. Optimal multi-material selection for lightweight design of automotive body assembly incorporating recyclability[J]. Materials and Design, 2013, 50: 846-857.
    [20] CHENG Z Q, THACKER J G, PILKEY W D, et al. Experiences in reverse-engineering of a finite element automobile crash model[J]. Finite Elements in Analysis and Design, 2001, 37 (11): 843-860. doi: 10.1016/S0168-874X(01)00071-3
    [21] WANG Wen-wei, ZHOU Cheng-jun, LIN Cheng, et al. Electric bus body lightweight design based on multiple constrains[J]. Advanced Materials Research, 2012, 538-541: 3137-3144. doi: 10.4028/www.scientific.net/AMR.538-541.3137
    [22] PIERCE A A, PARKER B L, INGLETON R, et al. Novel well completions in small diameter coreholes created using portable rock drills[J]. Groundwater Monitoring and Remediation, 2018, 38 (1): 42-55. doi: 10.1111/gwmr.12257
    [23] ISMAIL N, EL-HASSAN H. Development and characterization of fly ash-slag blended geopolymer mortar and lightweight concrete[J]. Journal of Materials in Civil Engineering, 2018, 30 (4): 1-14.
    [24] BRANCATI R, MASSA G D, PAGANO S, et al. A magneto-rheological elastomer vibration isolator for lightweight structures[J]. Meccanica, 2019, 54 (4): 333-349.
    [25] WU Jian-ping, NUSHOLTZ G S, BILKHU S. Optimization of vehicle crash pulses in relative displacement domain[J]. International Journal of Crashworthiness, 2012, 7 (4): 397-414.
    [26] CHENG Xing-lei, YANG Ai-wu, LI Guang-ning. Model tests and finite element analysis for the cyclic deformation process of suction anchors in soft clays[J]. Ocean Engineering, 2018, 151: 329-341.
    [27] MUCCILLO M, GIMELLI A, SANNINO R. Multi-objective optimization and sensitivity analysis of a cogeneration system for a hospital facility[J]. Energy Procedia, 2015, 81: 585-596.
    [28] EGE K, ROOZEN N B, LECLÈRE Q, et al. Assessment of the apparent bending stiffness and damping of multilayer plates; modelling and experiment[J]. Journal of Sound and Vibration, 2018, 426: 129-149.
    [29] FENDER J, DUDDECK F, ZIMMERMANN M. On the calibration of simplified vehicle crash models[J]. Structural and Multidisciplinary Optimization, 2014, 49 (3): 455-469.
    [30] SIGMUND O, MAUTE K. Topology optimization approaches[J]. Structural and Multidisciplinary Optimization, 2013, 48 (6): 1031-1055.
  • 加载中
图(16) / 表(8)
计量
  • 文章访问数:  718
  • HTML全文浏览量:  166
  • PDF下载量:  295
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-07
  • 刊出日期:  2019-06-25

目录

    /

    返回文章
    返回