留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速列车底部空气流动特性对转向架区域积雪的影响

蔡路 张继业 李田 安超

蔡路, 张继业, 李田, 安超. 高速列车底部空气流动特性对转向架区域积雪的影响[J]. 交通运输工程学报, 2019, 19(3): 109-121. doi: 10.19818/j.cnki.1671-1637.2019.03.012
引用本文: 蔡路, 张继业, 李田, 安超. 高速列车底部空气流动特性对转向架区域积雪的影响[J]. 交通运输工程学报, 2019, 19(3): 109-121. doi: 10.19818/j.cnki.1671-1637.2019.03.012
CAI Lu, ZHANG Ji-ye, LI Tian, AN Chao. Impact of air flow characteristics underneath carbody on snow accumulation in bogie region of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2019, 19(3): 109-121. doi: 10.19818/j.cnki.1671-1637.2019.03.012
Citation: CAI Lu, ZHANG Ji-ye, LI Tian, AN Chao. Impact of air flow characteristics underneath carbody on snow accumulation in bogie region of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2019, 19(3): 109-121. doi: 10.19818/j.cnki.1671-1637.2019.03.012

高速列车底部空气流动特性对转向架区域积雪的影响

doi: 10.19818/j.cnki.1671-1637.2019.03.012
基金项目: 

国家自然科学基金项目 51605397

国家重点研发计划项目 2016YFB1200403

详细信息
    作者简介:

    蔡路(1987-), 男, 湖南华容人, 西南交通大学工学博士研究生, 从事高速列车转向架防积雪结冰技术研究

    张继业(1965-), 男, 四川夹江人, 西南交通大学教授, 工学博士

  • 中图分类号: U270.32

Impact of air flow characteristics underneath carbody on snow accumulation in bogie region of high-speed train

More Information
  • 摘要: 针对高速列车转向架区域的积雪问题, 建立了包含精细化转向架的列车空气动力学模型; 采用分离涡模拟方法, 对运行速度为350 km·h-1的高速列车周围空气流场进行了模拟, 分析了空气流场特性对车底与转向架区域雪粒输运的影响; 提取了涡核线, 研究了转向架区域的涡流特征与雪粒输运的关系。研究结果表明: 车底气流主要由前后轮对后部向上翻转进入转向架区域, 绕轮轴形成旋转气流; 转向架底部区域涡量大于1 000 s-1, 涡流基本为纵向; 转向架顶部区域涡量小于200 s-1, 涡流基本为纵向; 转向架轮对与前后端墙的空隙处涡流多为竖向, 且后部轮对处的涡量较前部轮对处大5倍以上; 转向架内部区域涡量小于200 s-1, 涡流走向杂乱; 涡流的尺度、强度与走向特性反映出进入转向架区域的气流具有较强的挟带雪粒的能力, 而流出转向架的气流挟带雪粒的能力较弱; 头车下部区域负压较大, 车底与裙板两侧存在强度较大的涡流, 易卷起轨道积雪形成雪烟; 除头车外, 车底与转向架表面绝大部分区域壁面剪切应力小于1 Pa, 对应的摩擦风速小于0.9 m·s-1, 沉积的雪粒不易被内部气流剪切走。

     

  • 图  1  列车模型和转向架编号

    Figure  1.  Train model and bogie numbers

    图  2  转向架结构

    Figure  2.  Bogie structures

    图  3  计算域

    Figure  3.  Computational domain

    图  4  计算网格

    Figure  4.  Computational meshes

    图  5  阻力系数

    Figure  5.  Drag coefficients

    图  6  转向架区域切片位置

    Figure  6.  Positions of slices in bogie regions

    图  7  头车转向架区域流线

    Figure  7.  Streamlines around bogies of head car

    图  8  中间车转向架区域流线

    Figure  8.  Streamlines around bogies of middle car

    图  9  尾车转向架区域流线

    Figure  9.  Streamlines around bogies of tail car

    图  10  转向架周围低风速区域分布

    Figure  10.  Low wind speed region distributions around bogies

    图  11  转向架区域凹腔流动特征

    Figure  11.  Flow characteristic of cavity around bogie region

    图  12  列车底部涡核线

    Figure  12.  Vortex core lines underneath train

    图  13  转向架区域涡核线

    Figure  13.  Vortex core lines in bogie regions

    图  14  转向架b4周围不同尺度涡核线

    Figure  14.  Vortex core lines with different sizes around bogie b4

    图  15  列车周围Q等值面(Q=100 s-2, t=1.0 s)

    Figure  15.  Iso-surfaces of Q around train (Q=100 s-2, t=1.0 s)

    图  16  列车周围Q等值面(Q=5 000 s-2, t=1.0 s)

    Figure  16.  Iso-surfaces of Q around train (Q=5 000 s-2, t=1.0 s)

    图  17  不同高度水平截面涡量分布

    Figure  17.  Vorticity distributions on horizontal sections at different heights

    图  18  不同时刻车底Q等值面

    Figure  18.  Iso-surfaces of Q underneath train at different times

    图  19  地面压力分布(t=1.0 s)

    Figure  19.  Pressure distribution of ground (t=1.0 s)

    图  20  车体与转向架壁面剪切应力(t=1.0 s)

    Figure  20.  Wall shear stresses of carbody and bogies (t=1.0 s)

    表  1  转向架周围不同风速区间的空间体积

    Table  1.   Spatial volumes in different wind speed ranges around bogies m3

    转向架 0~5 m·s-1 5~10 m·s-1 10~15 m·s-1 15~20 m·s-1
    b1 1.056 1.999 1.730 1.068
    b2 1.761 3.041 1.610 0.854
    b3 1.545 2.563 1.609 1.033
    b4 2.584 2.540 1.140 0.907
    b5 2.051 2.375 1.704 1.301
    b6 2.216 3.018 1.345 0.711
    下载: 导出CSV
  • [1] KLOOW L. High-speed train operation in winter climate[R]. Stockholm: KTH Railway Group and Transrail, 2011.
    [2] SHISHIDO M, NAKADE K, IDO A, et al. Development of deflector to decrease snow-accretion to bogie of vehicle[J]. Rtri Report, 2009, 23 (3): 29-34.
    [3] 韩运动, 姚松, 陈大伟, 等. 高速列车转向架舱内流场实车测试和数值模拟[J]. 交通运输工程学报, 2015, 15 (6): 51-60. doi: 10.3969/j.issn.1671-1637.2015.06.007

    HAN Yun-dong, YAO Song, CHEN Da-wei, et al. Real vehicle test and numerical simulation of flow field in high-speed train bogie cabin[J]. Journal of Traffic and Transportation Engineering, 2015, 15 (6): 51-60. (in Chinese). doi: 10.3969/j.issn.1671-1637.2015.06.007
    [4] 丁叁叁, 田爱琴, 董天韵, 等. 端面下斜导流板对高速列车转向架防积雪性能的影响[J]. 中南大学学报(自然科学版), 2016, 47 (4): 1400-1405. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201604041.htm

    DING San-san, TIAN Ai-qin, DONG Tian-yun, et al. Influence of inclined guiding plate on anti-snow performance of high-speed train bogie[J]. Journal of Central South University (Science and Technology), 2016, 47 (4): 1400-1405. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201604041.htm
    [5] 何德华, 王刚义, 陈厚嫦, 等. 基于风雪两相流的高寒动车组转向架防冰雪绕流技术研究[J]. 铁道机车车辆, 2016, 36 (4): 38-42. doi: 10.3969/j.issn.1008-7842.2016.04.09

    HE De-hua, WANG Gang-yi, CHEN Hou-chang, et al. Analysis on two-phase flowing anti-ice/snow of low-temperature EMU bogie[J]. Railway Locomotive and Car, 2016, 36 (4): 38-42. (in Chinese). doi: 10.3969/j.issn.1008-7842.2016.04.09
    [6] 冯永华, 黄照伟, 张琰, 等. 高寒动车组转向架区域积雪结冰数值仿真研究[J]. 铁道科学与工程学报, 2017, 14 (3): 437-444. doi: 10.3969/j.issn.1672-7029.2017.03.002

    FENG Yong-hua, HUANG Zhao-wei, ZHANG Yan, et al. Research of numerical simulation of the snow icy phenomenon of the high-speed train bogie area[J]. Journal of Railway Science and Engineering, 2017, 14 (3): 437-444. (in Chinese). doi: 10.3969/j.issn.1672-7029.2017.03.002
    [7] RAGHUNATHAN R S, KIM H D, SETOGUCHI T. Aerodynamics of high-speed railway train[J]. Progress in Aerospace Sciences, 2002, 38 (6/7): 469-514.
    [8] SCHULTE-WERNING B. Research of European railway operators to reduce the environmental impact of high-speed trains[J]. Journal of Rail and Rapid Transit, 2003, 217 (4): 249-257. doi: 10.1243/095440903322712856
    [9] PAZ C, SUÁREZ E, GIL C, et al. Effect of realistic ballasted track in the underbody flow of a high-speed train via CFD simulations[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 184: 1-9. doi: 10.1016/j.jweia.2018.11.007
    [10] PAZ C, SUÁREZ E, GIL C. Numerical methodology for evaluating the effect of sleepers in the underbody flow of a high-speed train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 167: 140-147. doi: 10.1016/j.jweia.2017.04.017
    [11] 陈羽, 杨志刚, 高喆, 等. 底部结构对高速列车流场及气动优化规律的影响[J]. 同济大学学报(自然科学版), 2016, 44 (6): 930-936. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201606016.htm

    CHEN Yu, YANG Zhi-gang, GAO Zhe, et al. Influences of underbody structures on flow field and aerodynamic optimization laws of high speed train[J]. Journal of Tongji University (Natural Science), 2016, 44 (6): 930-936. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201606016.htm
    [12] XIA Cao, WANG Han-feng, SHAN Xi-zhuang, et al. Effects of ground configurations on the slipstream and near wake of a high-speed train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 168: 177-189. doi: 10.1016/j.jweia.2017.06.005
    [13] 郗艳红, 毛军, 高亮, 等. 横风作用下高速列车转向架非定常空气动力特性[J]. 中南大学学报(自然科学版), 2014, 45 (5): 1705-1714. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201405045.htm

    XI Yan-hong, MAO Jun, GAO Liang, et al. Aerodynamic force/moment for high-speed train bogie in crosswind field[J]. Journal of Central South University (Science and Technology), 2014, 45 (5): 1705-1714. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201405045.htm
    [14] ZHANG Jie, LI Jing-juan, TIAN Hong-qi, et al. Impact of ground and wheel boundary conditions on numerical simulation of the high-speed train aerodynamic performance[J]. Journal of Fluids and Structures, 2016, 61: 249-261. doi: 10.1016/j.jfluidstructs.2015.10.006
    [15] SHUR M L, SPALART P R, STRELETS M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29 (6): 1638-1649. doi: 10.1016/j.ijheatfluidflow.2008.07.001
    [16] GRITSKEVICH M S, GARBARUK A V, SCHUTZE J, et al. Development of DDES and IDDES formulations for the k-ω shear stress transport model[J]. Flow, Turbulence and Combustion, 2012, 88 (3): 431-449. doi: 10.1007/s10494-011-9378-4
    [17] FAVRE T, EFRAIMSSON G. An assessment of detached-eddy simulations of unsteady crosswind aerodynamics of road vehicles[J]. Flow, Turbulence and Combustion, 2011, 87 (1): 133-163. doi: 10.1007/s10494-011-9333-4
    [18] MORDEN J A, HEMIDA H, BAKER C J. Comparison of RANS and detached-eddy simulation results to wind-tunnel data for the surface pressures upon a class 43 high-speed train[J]. Journal of Fluids Engineering, 2015, 137 (4): 1-9.
    [19] 苗秀娟, 高广军. 基于DES的车辆横风性能模拟[J]. 中南大学学报(自然科学版), 2012, 43 (7): 2855-2860. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201207058.htm

    MIAO Xiu-juan, GAO Guang-jun. Aerodynamic performance of train under cross-wind based on DES[J]. Journal of Central South University (Science and Technology), 2012, 43 (7): 2855-2860. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201207058.htm
    [20] 张亮, 张继业, 李田, 等. 高速列车不同位置受电弓非定常气动特性研究[J]. 机械工程学报, 2017, 53 (12): 147-155. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201712018.htm

    ZHANG Liang, ZHANG Ji-ye, LI Tian, et al. Research on unsteady aerodynamic characteristics of pantographs in different positions of high-speed trains[J]. Journal of Mechanical Engineering, 2017, 53 (12): 147-155. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201712018.htm
    [21] 潘永琛, 姚建伟, 梁策, 等. 高速列车近尾流区涡旋结构的湍流特性分析[J]. 中国铁道科学, 2017, 38 (2): 83-88. doi: 10.3969/j.issn.1001-4632.2017.02.13

    PAN Yong-chen, YAO Jian-wei, LIANG Ce, et al. Analysis on turbulence characteristics of vortex structure in near wake of high speed train[J]. China Railway Science, 2017, 38 (2): 83-88. (in Chinese). doi: 10.3969/j.issn.1001-4632.2017.02.13
    [22] YAO Shuan-bao, SUN Zhen-xu, GUO Di-long, et al. Numerical study on wake characteristics of high-speed trains[J]. Acta Mechanica Sinica, 2013, 29 (6): 811-822. doi: 10.1007/s10409-013-0077-3
    [23] MULD T W, EFRAIMSSON G, HENNINGSON D S. Wake characteristics of high-speed trains with different lengths[J]. Journal of Rail and Rapid Transit, 2014, 228 (4): 333-342. doi: 10.1177/0954409712473922
    [24] 余以正, 姜旭东, 孙健. 不同排障器导流罩对高速列车阻力及升力的影响[J]. 大连交通大学学报, 2017, 38 (6): 30-34. https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD201706008.htm

    YU Yi-zheng, JIANG Xu-dong, SUN Jian. Drag force and lift force performance of a high speed train affected by different cowcatcher air-deflector[J]. Journal of Dalian Jiaotong University, 2017, 38 (6): 30-34. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD201706008.htm
    [25] SUJUDI D, HAIMES R. Identification of swirling flow in 3-D vector fields[C]//AIAA. 12th Computational Fluid Dynamics Conference. Reston: AIAA, 1995: 792-799.
    [26] 李相鹏, 周昊, 岑可法. 涡结构对小颗粒在圆管背风面碰撞分布的影响[J]. 浙江大学学报(工学版), 2006, 40 (4): 605-609. doi: 10.3785/j.issn.1008-973X.2006.04.013

    LI Xiang-peng, ZHOU Hao, CEN Ke-fa. Influences of vortices on impaction and distribution of small ash particles on rear side surface of boiler tube[J]. Journal of Zhejiang University (Engineering Science), 2006, 40 (4): 605-609. (in Chinese). doi: 10.3785/j.issn.1008-973X.2006.04.013
    [27] LYU Xiao-hui, HUANG Ning, TONG Ding. Wind tunnel experiments on natural snow drift[J]. Science China Technological Sciences, 2012, 55 (4): 927-938. doi: 10.1007/s11431-011-4731-3
    [28] 周晅毅, 顾明, 朱忠义, 等. 首都国际机场3号航站楼屋面雪载荷分布研究[J]. 同济大学学报(自然科学版), 2007, 35 (9): 1193-1196. doi: 10.3321/j.issn:0253-374X.2007.09.008

    ZHOU Xuan-yi, GU Ming, ZHU Zhong-yi, et al. Study on snow loads on roof of terminal 3 of Beijing Capital International Airport[J]. Journal of Tongji University (Natural Science), 2007, 35 (9): 1193-1196. (in Chinese). doi: 10.3321/j.issn:0253-374X.2007.09.008
    [29] KIND R J, MURRAY S B. Saltation flow measurements relating to modeling of snowdrifting[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1982, 10: 89-102. doi: 10.1016/0167-6105(82)90056-3
    [30] SATO T, KOSUGI K, MOCHIZUKI S, et al. Wind speed dependences of fracture and accumulation of snowflakes on snow surface[J]. Cold Regions Science and Technology, 2008, 51: 229-239. doi: 10.1016/j.coldregions.2007.05.004
  • 加载中
图(20) / 表(1)
计量
  • 文章访问数:  721
  • HTML全文浏览量:  219
  • PDF下载量:  435
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-19
  • 刊出日期:  2019-06-25

目录

    /

    返回文章
    返回