Comprehensive coordination quantitative analysis of urban rail transit planning network and urban planning
-
摘要: 运用分形理论分析了城市轨道交通规划网络与城市规划在多半径多方向的综合协调性; 基于网络等效长度提出了城市轨道交通规划网络的扇形维数和城市道路规划网络的扇形维数, 基于等效车站提出了城市轨道交通规划车站的扇形维数; 借鉴人口分形维数, 提出了城市交通需求的扇形维数; 运用4个扇形维数, 建立了基于向量相似度和分维一致性的城市轨道交通规划网络与城市规划的综合协调性评估指标; 以南充市2种城市轨道交通规划网络方案为例, 研究了城市轨道交通规划网络与南充市城市规划的综合协调性。研究结果表明: 随着研究半径的增大, 扇形维数的均值逐渐减小, 与城市轨道交通规划网络和城市规划的情况相一致; 城市轨道交通规划网络与城市规划的向量相似度越高, 其在方向上的匹配程度越高; 城市轨道交通规划网络与城市规划的分维一致性越强, 其在研究区域内的协调性越高; 仅从分维一致性不能全面反映城市轨道交通规划网络与城市规划的协调性, 需要结合向量相似度与分维一致性全面分析; 城市轨道交通规划网络与城市规划的协调性随研究半径的变化而改变, 当研究半径分别为3、6、9、12、15 km时, 方案1与南充市城市规划的综合协调性指标分别为0.48、0.45、0.40、0.53、0.43, 方案2与南充市城市规划的协调性指标分别为0.40、0.50、0.48、0.51、0.47;2种方案与城市的协调性指标与实际情况相符合。可见, 本文计算的指标和方法适用于城市轨道交通规划网络与城市规划的综合协调性评价。Abstract: The comprehensive coordination between urban rail transit planning network and urban planning in multi-radii and multi-directions was analyzed based on the fractal theory, the sector dimensions of urban rail transit planning network and urban road planning network based on network equivalent length were proposed, and the sector dimension of urban rail transit planning stations based on the equivalent stations was proposed. The sector dimension of urban traffic demand was proposed referring to the fractal dimension of population. The comprehensive coordination evaluation indicator of urban rail transit planning network and urban planning based on the vector similarity and fractal consistency was established by using the four sector dimensions. Taking two schemes of urban rail transit planning network in Nanchong as examples, the comprehensive coordination between urban rail transit planning network and urban planning was analyzed. Analysis result shows that the mean of the sector dimension decreases with the increase of research radius, and it's consistent with the urban rail transit planning network and urban planning. The higher the vector similarity between urban rail transit planning network and urban planning, the higher the matching degree in directions. The stronger the fractal consistency between urban rail transit planning network and urban planning, the better the coordination in the research area. The coordination between urban rail transit planning network and urban planning cannot be fully reflected only from the fractal consistency, it should be analyzed by combining the vector similarity and fractal consistency. The coordination between urban rail transit planning network and urban planning changes with the change of research radius. When the research radius is 3, 6, 9, 12 and 15 km, respectively, the comprehensive coordination indicator between scheme 1 and urban planning in Nanchong is 0.48, 0.45, 0.40, 0.53 and 0.43, respectively, and the comprehensive coordination indicator between scheme 2 and urban planning in Nanchong is 0.40, 0.50, 0.48, 0.51 and 0.47, respectively. The values of coordination indicators between the two schemes and urban planning in Nanchong are consistent with the reality. Therefore, the indicators and method are applicable to the comprehensive coordination evaluation of urban rail transit planning network and urban planning.
-
表 1 南充市中心测算结果
Table 1. Center measurement results in Nanchong
测算方法 交通规划的中心坐标/m 南充市中心坐标/m 节点度中心测算法 (1 356, -3 628) (1 365, -3 499) 节点紧密度中心测算法 (1 429, -3 494) 节点介数中心计算法 (1 311, -3 375) 表 2 南充城市轨道交通规划方案对比
Table 2. Comparison of urban rail transit planning schemes in Nanchong
线路 方案1 方案2 长度/km 高峰客流/万人次 车站数 换乘站数 长度/km 高峰客流/万人次 车站数 换乘站数 1 34.2 4.11 26 4 34.2 4.09 26 4 2 28.2 3.55 22 4 17.2 3.49 16 2 3 32.4 3.17 23 3 36.5 3.35 26 4 4 22.0 2.73 14 3 22.7 3.01 18 2 表 3 不同半径内的zi, r和ti, r
Table 3. zi, rand ti, rin different radii
扇形区域 r=3 km r=6 km r=9 km r=12 km r=15 km zi, r ti, r zi, r ti, r zi, r ti, r zi, r ti, r zi, r ti, r 1 1.35 3.55 1.32 3.02 1.37 2.67 1.36 2.40 1.33 1.83 2 1.37 3.57 1.45 3.15 1.42 2.72 1.41 2.45 1.37 1.87 3 1.44 3.64 1.48 3.18 1.46 2.76 1.44 2.48 1.38 1.88 4 1.40 3.60 1.31 3.01 1.34 2.64 1.31 2.35 1.26 1.76 5 1.49 3.69 1.50 3.20 1.46 2.76 1.47 2.52 1.40 1.91 6 1.50 3.70 1.45 3.15 1.34 2.64 1.31 2.35 1.23 1.72 7 1.53 3.73 1.46 3.16 1.43 2.73 1.41 2.45 1.42 1.92 8 1.43 3.63 1.43 3.13 1.45 2.75 1.42 2.46 1.39 1.89 平均值 1.44 3.64 1.42 3.12 1.41 2.71 1.39 2.43 1.35 1.85 表 4 方案1在不同半径内的ui, r和wi, r
Table 4. ui, rand wi, rof scheme 1 in different radii
扇形区域 r=3 km r=6 km r=9 km r=12 km r=15 km ui, r wi, r ui, r wi, r ui, r wi, r ui, r wi, r ui, r wi, r 1 1.19 1.96 1.09 1.79 1.21 1.61 1.20 1.51 1.19 1.43 2 1.26 2.19 1.32 1.86 1.21 1.73 1.20 1.59 1.18 1.41 3 1.34 2.18 1.31 1.94 1.19 1.79 1.22 1.53 1.20 1.43 4 1.17 1.90 1.03 1.77 1.23 1.63 1.23 1.44 1.22 1.46 5 1.26 2.15 1.28 1.86 1.14 1.64 1.13 1.63 1.14 1.37 6 1.15 2.14 1.27 1.75 1.05 1.45 1.13 1.44 1.05 1.29 7 1.25 2.22 1.35 1.85 1.19 1.69 1.22 1.53 1.24 1.48 8 1.28 2.03 1.16 1.88 1.35 1.75 1.30 1.62 1.22 1.46 平均值 1.24 2.10 1.23 1.84 1.20 1.66 1.20 1.54 1.18 1.42 -
[1] 张杰. 从协调性看轨道交通建设规划编制要点[J]. 都市快轨交通, 2014, 27 (2): 26-29. doi: 10.3969/j.issn.1672-6073.2014.02.006ZHANG Jie. Main points in compiling rail transit construction plans: a perspective of coordination[J]. Urban Rapid Rail Transit, 2014, 27 (2): 26-29. (in Chinese). doi: 10.3969/j.issn.1672-6073.2014.02.006 [2] 王晓荣. 轨道交通与大城市形态互动演化关系研究——基于时空经济学视角[D]. 北京: 北京交通大学, 2018.WANG Xiao-rong. Analysis of the relationship between rail transit and urban form——based on time-space economics[D]. Beijing: Beijing Jiaotong University, 2018. (in Chinese). [3] 张晓东. 北京轨道交通与城市协调发展的思考与建议[J]. 城市规划, 2016, 40 (10): 81-85. https://www.cnki.com.cn/Article/CJFDTOTAL-CSGH201610013.htmZHANG Xiao-dong. Considerations and suggestions on coordinated development of city and rail transit in Beijing[J]. City Planning Review, 2016, 40 (10): 81-85. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CSGH201610013.htm [4] MANDELBROT B B. How long is the coast of Britain?Statistical self-similarity and fractional dimension[J]. Science, 1967, 156: 636-638. doi: 10.1126/science.156.3775.636 [5] 刘勇洪, 徐永明. 利用分形的北京城市空间拓展分析[J]. 测绘科学, 2015, 40 (10): 30-36. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201510006.htmLIU Yong-hong, XU Yong-ming. Urban spatial expansion of Beijing based on city fractal[J]. Science of Surveying and Mapping, 2015, 40 (10): 30-36. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201510006.htm [6] FANG Gang, YANG Juan, LI Qi. Suzhou urban expansion and its fractal characteristic analysis[J]. Applied Mechanics and Materials, 2012, 209-211: 499-502. doi: 10.4028/www.scientific.net/AMM.209-211.499 [7] 张宸铭, 高建华, 黎世民, 等. 基于路网可达性的城市空间形态集聚分形研究[J]. 地理研究, 2018, 37 (12): 2528-2540. https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ201812014.htmZHANG Chen-ming, GAO Jian-hua, LI Shi-min, et al. Fractal dimension study of urban morphology based on network accessibility[J]. Geographical Research, 2018, 37 (12): 2528-2540. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ201812014.htm [8] 李畅, 李桂娥, 朱昱佳. 城市交通网络分形维数的不确定性估计-控制与分析[J]. 遥感学报, 2017, 21 (1): 74-83. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201701007.htmLI Chang, LI Gui-e, ZHU Yu-jia. Uncertainty estimation, control, and analysis of fractal dimension for urban traffic network[J]. Journal of Remote Sensing, 2017, 21 (1): 74-83. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201701007.htm [9] 刘承良, 段德忠. 武汉城市圈城乡路网空间生长的分形研究[J]. 交通运输系统工程与信息, 2013, 13 (5): 185-193. doi: 10.3969/j.issn.1009-6744.2013.05.028LIU Cheng-liang, DUAN De-zhong. Spatial growth of urban-rural road network in Wuhan metropolitan area based on fractal theory[J]. Journal of Transportation Systems Engineering and Information Technology, 2013, 13 (5): 185-193. (in Chinese). doi: 10.3969/j.issn.1009-6744.2013.05.028 [10] 唐建桥, 左大杰, 王慈光. 基于分形维数的交通路网覆盖形态特性研究[J]. 公路交通科技, 2014, 31 (4): 114-119, 158. doi: 10.3969/j.issn.1002-0268.2014.04.019TANG Jian-qiao, ZUO Da-jie, WANG Ci-guang. Study on covering morphology characters of traffic network based on fractal dimension[J]. Journal of Highway and Transportation Research and Development, 2014, 31 (4): 114-119, 158. (in Chinese). doi: 10.3969/j.issn.1002-0268.2014.04.019 [11] LI Bao-jie, GU He-he, JI Ya-zhou. Study on fractal features of transportation network in Xuzhou city[C]//IEEE. 2nd International Conference on Remote Sensing, Environment and Transportation Engineering. New York: IEEE, 2012: 1-4. [12] XU Zong-yan, XING Lin-fang, ZHOU Fei-fei, et al. Fractal characteristics of transportation network of Tianjin city[C]//IEEE. International Conference on Mechatronics and Automation. New York: IEEE, 2010: 356-359. [13] 刘妙龙, 黄蓓佩. 上海大都市交通网络分形的时空特征演变研究[J]. 地理科学, 2004, 24 (2): 144-149. doi: 10.3969/j.issn.1000-0690.2004.02.003LIU Miao-long, HUANG Bei-pei. Spatial-temporal evolution of fractal feature in traffic network of Shanghai metropolis[J]. Scientia Geographica Sinica, 2004, 24 (2): 144-149. (in Chinese). doi: 10.3969/j.issn.1000-0690.2004.02.003 [14] 柏春广, 蔡先华. 南京市交通网络的分形特征[J]. 地理研究, 2008, 27 (6): 1419-1426. doi: 10.3321/j.issn:1000-0585.2008.06.021BAI Chun-guang, CAI Xian-hua. Fractal characteristics of transportation network of Nanjing city[J]. Geographical Research, 2008, 27 (6): 1419-1426. (in Chinese). doi: 10.3321/j.issn:1000-0585.2008.06.021 [15] ZHANG Pei-yu, PAN Jian-jun, XIE Long-tao, et al. Spatial-temporal evolution and regional differentiation features of urbanization in China from 2003 to 2013[J]. International Journal of Geo-Information, 2019, 8 (31): 1-16. [16] BENGUIGUI L, DAOUD M. Is the suburban railway system a fractal?[J]. Geographical Analysis, 1991, 23 (4): 362-368. [17] KIM K S, BENGGUIGUI L, MARINOV M. The fractal structure of Seoul's public transportation system[J]. Cities, 2003, 20 (1): 31-39. doi: 10.1016/S0264-2751(02)00094-X [18] 张梦, 姜丽丽. 东北地区铁路交通网络分形结构特征研究[J]. 哈尔滨师范大学自然科学学报, 2017, 33 (5): 121-126. doi: 10.3969/j.issn.1000-5617.2017.05.022ZHANG Meng, JIANG Li-li. Study on fractal structure characteristics of railway transportation network in northeast China[J]. Natural Sciences Journal of Harbin Normal University, 2017, 33 (5): 121-126. (in Chinese). doi: 10.3969/j.issn.1000-5617.2017.05.022 [19] 孙壮志. 城市交通网络形态特征分形计量研究[J]. 交通运输系统工程与信息, 2007, 7 (1): 29-38. doi: 10.3969/j.issn.1009-6744.2007.01.005SUN Zhuang-zhi. The study of fractal approach to measure urban rail transit network morphology[J]. Journal of Transportation Systems Engineering and Information Technology, 2007, 7 (1): 29-38. (in Chinese). doi: 10.3969/j.issn.1009-6744.2007.01.005 [20] DOMÉNECH A. A topological phase transition between small-worlds and fractal scaling in urbanrailway transportation networks?[J]. Physica A: Statistical Mechanics and its Applications, 2009, 388 (21): 4658-4668. doi: 10.1016/j.physa.2009.07.036 [21] 马超群, 王玉萍. 轨道交通网络与城市形态在分形上的一致性分析[J]. 铁道运输与经济, 2009, 31 (3): 46-50. doi: 10.3969/j.issn.1003-1421.2009.03.015MA Chao-qun, WANG Yu-ping. Analysis on consistency between rail transit network and urban morphology in fractal dimension[J]. Railway Transport and Economy, 2009, 31 (3): 46-50. (in Chinese). doi: 10.3969/j.issn.1003-1421.2009.03.015 [22] 叶臻, 关宏志. 城市轨道交通站点换乘供需分形量化研究[J]. 公路交通科技, 2013, 30 (10): 98-104. doi: 10.3969/j.issn.1002-0268.2013.10.018YE Zhen, GUAN Hong-zhi. Fractal quantification of supply and demand of urban rail transit stations[J]. Journal of Highway and Transportation Research and Development, 2013, 30 (10): 98-104. (in Chinese). doi: 10.3969/j.issn.1002-0268.2013.10.018 [23] 叶臻, 关宏志. 城市轨道交通枢纽换乘供需一致性研究[J]. 北京工业大学学报, 2014, 40 (4): 542-548. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201404011.htmYE Zhen, GUAN Hong-zhi. Study on the consistency between supply and demand on terminals of urban rail transit network[J]. Journal of Beijing University of Technology, 2014, 40 (4): 542-548. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201404011.htm [24] 王燕, 李想, 吕程. 基于分形模型的京津冀铁路网络协同发展——与长江三角洲-珠江三角洲的比较分析[J]. 中国流通经济, 2015 (8): 47-54. doi: 10.3969/j.issn.1007-8266.2015.08.008WANG Yan, LI Xiang, LYU Cheng. Study on the coordinated development of Beijing-Tianjin-Hebei railway network based on fractal model[J]. China Business and Market, 2015 (8): 47-54. (in Chinese). doi: 10.3969/j.issn.1007-8266.2015.08.008 [25] 段德忠, 刘承良, 陈欣怡. 基于分形理论的公交网络空间结构复杂性研究——以武汉市中心城区为例[J]. 地理与地理信息科学, 2013, 29 (2): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-DLGT201302013.htmDUAN De-zhong, LIU Cheng-liang, CHEN Xin-yi. Study on the complexity of the public transportation network spatial structure based on fractal theory: taking Wuhan center city area as an example[J]. Geography and Geo-Information Science, 2013, 29 (2): 66-71. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DLGT201302013.htm [26] 叶臻, 贺明光, 梁科科. 出租车服务站布局与城市形态协调性量化分析[J]. 武汉理工大学学报(交通科学与工程版), 2018, 42 (2): 216-220, 225. doi: 10.3963/j.issn.2095-3844.2018.02.010YE Zhen, HE Ming-guang, LIANG Ke-ke. Quantitative analysis of coordination between taxi service station layout and urban morphology[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering), 2018, 42 (2): 216-220, 225. (in Chinese). doi: 10.3963/j.issn.2095-3844.2018.02.010 [27] 王玉萍, 陈宽民, 马超群. 城市轨道交通网络与城市形态的协调性量化分析[J]. 铁道工程学报, 2008 (11): 11-15, 26. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC200811003.htmWANG Yu-ping, CHEN Kuan-min, MA Chao-qun. Quantitative analysis of coordination between rail transit network configuration and urban form[J]. Journal of Railway Engineering Society, 2008 (11): 11-15, 26. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC200811003.htm [28] FENG Yong-jiu, LIU Miao-long, TONG Xiao-hua. Weighted radial dimension: an improved fractal measurement for highway transportation networks distribution[C]//SPIE. Proceedings of SPIE—The International Society for Optical Engineering. Bellingham: SPIE, 2007: 6753-6765. [29] LIU Jun, XIONG Qing-yu, SHI Wei-ren, et al. Evaluating the importance of nodes in complex networks[J]. Physica A: Statistical Mechanics and its Applications, 2016, 452: 209-219. [30] 秦静, 方创琳, 王洋, 等. 基于三维计盒法的城市空间形态分维计算和分析[J]. 地理研究, 2015, 34 (1): 85-96. https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ201501009.htmQIN Jing, FANG Chuang-lin, WANG Yang, et al. A three dimensional box-counting method for estimating fractal dimension of urban form[J]. Geographical Research, 2015, 34 (1): 85-96. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ201501009.htm [31] 马建华, 刘德新, 陈衍球. 中国大陆海岸线随机前分形分维及其长度不确定性探讨[J]. 地理研究, 2015, 34 (2): 319-327. https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ201502012.htmMA Jian-hua, LIU De-xin, CHEN Yan-qiu. Random prefractal dimension and length uncertainty of the continental coastline of China[J]. Geographical Research, 2015, 34 (2): 319-327. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ201502012.htm