留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国煤炭运输网络空间演化

王文雅 李振福

王文雅, 李振福. 中国煤炭运输网络空间演化[J]. 交通运输工程学报, 2019, 19(3): 166-177. doi: 10.19818/j.cnki.1671-1637.2019.03.017
引用本文: 王文雅, 李振福. 中国煤炭运输网络空间演化[J]. 交通运输工程学报, 2019, 19(3): 166-177. doi: 10.19818/j.cnki.1671-1637.2019.03.017
WANG Wen-ya, LI Zhen-fu. Spatial evolution of coal transportation network of China[J]. Journal of Traffic and Transportation Engineering, 2019, 19(3): 166-177. doi: 10.19818/j.cnki.1671-1637.2019.03.017
Citation: WANG Wen-ya, LI Zhen-fu. Spatial evolution of coal transportation network of China[J]. Journal of Traffic and Transportation Engineering, 2019, 19(3): 166-177. doi: 10.19818/j.cnki.1671-1637.2019.03.017

中国煤炭运输网络空间演化

doi: 10.19818/j.cnki.1671-1637.2019.03.017
基金项目: 

国家重点研发计划项目 2016YFC142706

国家社会科学基金重大项目 13&ZD170

辽宁省高等教育内涵发展专项资金项目 20110116405

详细信息
    作者简介:

    王文雅(1990-), 女, 内蒙古赤峰人, 大连海事大学工学博士研究生, 从事煤炭运输网络研究

    李振福(1969-), 男, 吉林榆树人, 大连海事大学教授, 工学博士

  • 中图分类号: U113

Spatial evolution of coal transportation network of China

More Information
  • 摘要: 为了研究中国煤炭运输网络的演变规律和内在作用机制, 借鉴复杂网络的建模思想, 提出了综合煤炭价格成本和运输成本选择机制的煤炭运输网络演化模型, 并通过调节模型参数, 分析了其对网络特性的影响; 为反映煤炭价格动态波动对节点选择的影响, 构建了服务于演化模型的煤炭价格波动函数; 采用1998年中国煤炭运输数据进行仿真计算, 并将仿真结果与2016年中国煤炭运输网络特性进行对比, 以验证提出的煤炭运输网络演化模型的合理性。研究结果表明: 节点强度比节点度更适合用于分析中国煤炭运输网络特性; 中国煤炭运输网络为异配网络, 移走少数高强度节点会严重影响网络的连通性, 增加煤炭运输进口节点会减小移走少数高强度节点对网络的影响; 增加煤炭运输出口节点能提高中国煤炭运输网络的可靠性, 能大大提高山东、辽宁等地区的港口潜力, 带动地区经济发展; 增加煤炭运输进口节点会使中国东南部沿海地区和中部地区成为关键节点, 也能提高中国煤炭运输网络的可靠性, 但网络抗毁性会减弱, 网络中关键节点与非关键节点连接的倾向性会逐渐减弱, 网络的传递性和紧密程度表现为先升高后降低的趋势。可见, 在增加煤炭运输进出口节点的同时, 应加强对煤炭运输网络的整体规划和对枢纽地区的建设和管理, 合理引导煤炭运输资源配置, 以提高中国煤炭运输网络的整体性能。

     

  • 图  1  2007~2016年中国煤炭价格

    Figure  1.  Coal prices of China from 2007 to 2016

    图  2  2007~2016年中国煤炭运输量

    Figure  2.  Coal transportation volumes of China from 2007 to 2016

    图  3  2007~2016年中国煤炭供需剩余、出口煤炭运输量差与煤炭供需剩余差

    Figure  3.  Supply and demand surpluses of coal, transportation volume differences of exporting coal and differences of supply and demand surplus of China from 2007 to 2016

    图  4  2007~2016年陕西省煤炭实际价格与模拟价格对比

    Figure  4.  Comparison of actual and simulated coal prices of Shaanxi Province from 2007 to 2016

    图  5  模拟的节点累积度概率分布和2016年中国煤炭运输网络节点累积度概率分布

    Figure  5.  Node cumulative degree probability distributions of simulation and coal transportation network of China in 2016

    图  6  模拟的节点强度概率分布和2016年中国煤炭运输网络节点强度概率分布

    Figure  6.  Node strength probability distributions of simulation and coal transportation network of China in 2016

    图  7  模拟所得中国煤炭运输网络

    Figure  7.  Coal transportation network of China obtained from simulation

    图  8  不同参数临界值下的演化模型邻节点平均强度分布

    Figure  8.  Distributions of average strengths of neighbor nodes under different thresholds of parameters

    图  9  a=0.7, b=0.8时中国煤炭运输网络节点介数中心性

    Figure  9.  Nodal betweenness centralities of coal transportation network of China when a=0.7 and b=0.8

    图  10  a=0.7, b=0.7时中国煤炭运输网络节点介数中心性

    Figure  10.  Nodal betweenness centralities of coal transportation network of China when a=0.7 and b=0.7

    图  11  a=0.5, b=0.8时中国煤炭运输网络节点介数中心性

    Figure  11.  Nodal betweenness centralities of coal transportation network of China when a=0.5 and b=0.8

    图  12  不同参数值下的中国煤炭运输网络效率

    Figure  12.  Coal transportation network efficiencies of China under different values of parameters

    图  13  不同参数值下的中国煤炭运输网络最大连通子图

    Figure  13.  Largest connected subgraphs of coal transportation network of China under different values of parameters

    图  14  不同参数值下中国煤炭运输网络的带权聚类系数

    Figure  14.  Weighted clustering coefficients of coal transportation network of China under different values of parameters

    表  1  需求节点与供给节点坐标和煤炭价格

    Table  1.   Coordinates of demand and supply nodes and coal prices

    供需节点 节点坐标(Xi, Yi) 煤炭价格(1998) / (元·t-1) 煤炭运出量(1998) /104 t 煤炭运出量(1997) /104 t
    北京 (116.40, 39.90) 111 547 691
    天津 (117.20, 39.12) 123 51 37
    河北 (114.52, 38.05) 133 3 646 4 271
    山西 (112.55, 37.87) 98 19 972 22 174
    内蒙古 (111.73, 40.83) 121 4 327 4 825
    辽宁 (123.43, 41.80) 131 2 954 3 118
    吉林 (125.32, 43.90) 122 1 604 1 849
    黑龙江 (126.53, 45.80) 111 5 589 6 911
    上海 (121.47, 31.23) 232 18 55
    江苏 (118.78, 32.07) 323 1 192 1 356
    浙江 (120.15, 30.28) 333 29 53
    安徽 (117.25, 31.83) 222 3 337 3 255
    福建 (119.30, 26.08) 323 401 382
    江西 (115.85, 28.68) 321 842 863
    山东 (116.98, 36.67) 212 3 858 3 631
    河南 (113.62, 34.75) 164 5 290 5 706
    湖北 (114.30, 30.60) 212 17 37
    湖南 (112.93, 28.23) 222 1 057 1 223
    广东 (113.27, 23.13) 341 474 505
    广西 (108.37, 22.82) 424 350 386
    海南 (110.32, 20.03) 513 4 5
    重庆 (106.55, 29.57) 123 888
    四川 (104.07, 30.67) 211 1 530 2 748
    贵州 (106.63, 26.65) 102 1 552 1 316
    云南 (102.72, 25.05) 222 620 664
    陕西 (108.93, 34.27) 107 1 263 1 846
    甘肃 (103.82, 36.07) 200 650 711
    青海 (101.78, 36.62) 248 100 121
    宁夏 (106.28, 38.47) 248 1 076 1 147
    新疆 (87.62, 43.82) 300 457 459
    下载: 导出CSV

    表  2  模型模拟与2016中国年煤炭运输网络运输量差值

    Table  2.   Differences of traffic volumes between model simulation and coal transportation network of China in 2016

    节点对 新疆—云南 内蒙古—黑龙江 陕西—湖北 河南—福建 广西—云南
    煤炭运输网络运输量差值/104 t -2 5 5 2 -3
    差值占实际线路运输量的比例/% -2.76 1.03 1.96 2.55 -2.30
    下载: 导出CSV

    表  3  ab取值不同时代表的含义

    Table  3.   Represented implications of a and b when given different values

    ab取值 含义
    a=0.7, b=0.8 中国现实煤炭运输网络
    a=0.7, b=0.7 保持煤炭运输进口节点不变, 增加煤炭运输出口节点
    a=0.5, b=0.8 保持煤炭运输出口节点不变, 增加煤炭运输进口节点
    下载: 导出CSV
  • [1] 程风禹, 刘金妹, 翟补栓. 浅析山西煤炭外运发展现状[J]. 物流科技, 2009 (4): 12-14. doi: 10.3969/j.issn.1002-3100.2009.04.005

    CHENG Feng-yu, LIU Jin-mei, ZHAI Bu-shuan. The analysis of the actuality of shipping out its coal of Shanxi[J]. Logistics Sci-Tech, 2009 (4): 12-14. (in Chinese). doi: 10.3969/j.issn.1002-3100.2009.04.005
    [2] 管小俊. 煤炭物流运输网络绩效评价研究[J]. 物流技术, 2011, 30 (8): 36-38. https://www.cnki.com.cn/Article/CJFDTOTAL-WLJS201115012.htm

    GUAN Xiao-jun. Performance evaluation for coal logistics transportation network[J]. Logistics Technology, 2011, 30 (8): 36-38. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WLJS201115012.htm
    [3] 张玉韩, 侯华丽. 1991-2010年中国煤炭铁路交流格局变迁[J]. 地域研究与开发, 2016, 35 (2): 19-23, 35. doi: 10.3969/j.issn.1003-2363.2016.02.004

    ZHANG Yu-han, HOU Hua-li. Railway coal flow in China from 1991 to 2010: spatial configuration and its evolution[J]. Areal Research and Development, 2016, 35 (2): 19-23, 35. (in Chinese). doi: 10.3969/j.issn.1003-2363.2016.02.004
    [4] 乔金锁, 王喜富, 沈喜生, 等. 基于复杂网络理论的山西煤炭运输网络复杂性分析[J]. 北京交通大学学报, 2013, 37 (3): 127-132. doi: 10.3969/j.issn.1673-0291.2013.03.024

    QIAO Jin-suo, WANG Xi-fu, SHEN Xi-sheng, et al. Complexity analysis of Shanxi coal transportation network based on complex network theory[J]. Journal of Beijing Jiaotong University, 2013, 37 (3): 127-132. (in Chinese). doi: 10.3969/j.issn.1673-0291.2013.03.024
    [5] 成升魁, 徐增让, 沈镭. 我国省际煤炭资源流动的时空演变及驱动力[J]. 地理学报, 2008, 63 (6): 603-612. doi: 10.3321/j.issn:0375-5444.2008.06.005

    CHENG Sheng-kui, XU Zeng-rang, SHEN Lei. Spatial-temporal process and driving force of interprovincial coal flowing in China[J]. Acta Geographica Sinica, 2008, 63 (6): 603-612. (in Chinese). doi: 10.3321/j.issn:0375-5444.2008.06.005
    [6] 王成金, 莫辉辉, 王姣娥. 中国煤炭资源流动格局及流场规律研究[J]. 自然资源学报, 2009, 24 (8): 1402-1411. doi: 10.3321/j.issn:1000-3037.2009.08.009

    WANG Cheng-jin, MO Hui-hui, WANG Jiao-e. Regularity and pattern of Chinese coal resources flow field[J]. Journal of Natural Resources, 2009, 24 (8): 1402-1411. (in Chinese). doi: 10.3321/j.issn:1000-3037.2009.08.009
    [7] 赵媛, 于鹏. 我国煤炭资源空间流动的基本格局与流输通道[J]. 经济地理, 2007, 27 (2): 196- 200. doi: 10.3969/j.issn.1000-8462.2007.02.005

    ZHAO Yuan, YU Peng. The spatial pattern of coal flow and flowing channel in China[J]. Economic Geography, 2007, 27 (2): 196-200. (in Chinese). doi: 10.3969/j.issn.1000-8462.2007.02.005
    [8] 王成金, 王伟. 中国港口煤炭进出口格局演变及动力机制[J]. 资源科学, 2016, 38 (4): 631-644. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201604006.htm

    WANG Cheng-jin, WANG Wei. Development of import-export coal trade by port on mainland China: spatial pattern, evolution and dynamics[J]. Resources Science, 2016, 38 (4): 631-644. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201604006.htm
    [9] 嵇昊威, 赵媛. 中国煤炭铁路运输网络可达性空间格局研究[J]. 地域研究与开发, 2014, 3 (1): 6-11. doi: 10.3969/j.issn.1003-2363.2014.01.002

    JI Hao-wei, ZHAO Yuan. The accessibility spatial pattern of coal railway transport network in China[J]. Areal Research and Development, 2014, 3 (1): 6-11. (in Chinese). doi: 10.3969/j.issn.1003-2363.2014.01.002
    [10] 乔金锁, 王喜富, 沈喜生, 等. 煤炭运输网络结构鲁棒性评价及应用研究[J]. 交通运输系统工程与信息, 2013, 13 (4): 126-133. doi: 10.3969/j.issn.1009-6744.2013.04.019

    QIAO Jin-suo, WANG Xi-fu, SHEN Xi-sheng, et al. Robustness evaluation and application of structure of coal transportation network[J]. Journal of Transportation Systems Engineering and Information Technology, 2013, 13 (4): 126-133. (in Chinese). doi: 10.3969/j.issn.1009-6744.2013.04.019
    [11] 肖致明. 铁路煤炭运输网络流量分配优化模型研究[J]. 内蒙古科技与经济, 2018 (15): 72-75. doi: 10.3969/j.issn.1007-6921.2018.15.037

    XIAO Zhi-ming. Research on optimization model of traffic flow distribution in railway coal transportation network[J]. Inner Mongolia Science Technology and Economy, 2018 (15): 72-75. (in Chinese). doi: 10.3969/j.issn.1007-6921.2018.15.037
    [12] 陆秋琴, 靳超. 煤炭运输公路网络可靠性仿真分析[J]. 计算机应用, 2019, 39 (1): 292-297. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201901051.htm

    LU Qiu-qin, JIN Chao. Reliability simulation analysis of coal transportation road network[J]. Journal of Computer Applications, 2019, 39 (1): 292-297. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201901051.htm
    [13] WANG Wei, WANG Cheng-jin, JIN Feng-jun. Spatial evolution of coal transportation at coastal ports in China[J]. Journal of Geographical Sciences, 2018, 28 (2): 238-256. doi: 10.1007/s11442-018-1470-4
    [14] 姜巍, 高卫东, 张敏. 中国煤炭资源铁路流通网络结构特征及其演变[J]. 经济地理, 2013, 33 (1): 98-104. https://www.cnki.com.cn/Article/CJFDTOTAL-JJDL201301015.htm

    JIANG Wei, GAO Wei-dong, ZHANG Min. China coal resource railway circulation network's structural characteristic and evolvement[J]. Economic Geography, 2013, 33 (1): 98-104. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JJDL201301015.htm
    [15] WATTS D J, STROGATZ S H. Collective dynamics of 'small-world' networks[J]. Nature, 1998, 4: 440.
    [16] KRAPIVSKY P L, REDNER S, LEYVRAZ F. Connectivity of growing random networks[J]. Physical Review Letters, 2000, 85 (21): 4629-4632. doi: 10.1103/PhysRevLett.85.4629
    [17] ZADOROZHNYI V N, YUDIN E B. Growing network: models following nonlinear preferential attachment rule[J]. Physica A: Stastical Mechanics and its Applications, 2015, 428 (15): 111-132.
    [18] RUI Y K, BAN Y F, WANG J C, et al. Exploring the patterns and evolution of self-organized urban street networks through modeling[J]. The European Physical Journal B, 2013, 86: 1-8. doi: 10.1140/epjb/e2012-30793-6
    [19] YOOK S H, JEONG H, BARABASI A L, et al. Weighted evolving networks[J]. Physical Review Letters, 2001, 86 (25): 5835-5838. doi: 10.1103/PhysRevLett.86.5835
    [20] LI Chun-gang, CHEN Guan-rong. A comprehensive weighted evolving network model[J]. Physics A: Statistical Mechanics and its Applications, 2004, 343: 288-294. doi: 10.1016/j.physa.2004.06.160
    [21] 王锋, 张舒玮. 基于状态空间模型的我国煤炭价格长期趋势预测[J]. 统计与信息论坛, 2011, 26 (8): 67-72. https://www.cnki.com.cn/Article/CJFDTOTAL-TJLT201108013.htm

    WANG Feng, ZHANG Shu-wei. Forecasting long-run coal price in China: based on the state space model[J]. Statistics and Information Forum, 2011, 26 (8): 67-72. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJLT201108013.htm
    [22] WU Li-xuan, HUANG Zhong-xiang, WANG Yu-lan, et al. A dynamic evolution model of disequilibrium network traffic flow with quantity regulation of congestion[J]. Journal of Traffic and Transportation Engineering, 2018, 18 (3): 167-179.
    [23] 田立新, 贺莹环, 黄益. 一种新型二分网络类局域世界演化模型[J]. 物理学报, 2012, 61 (22): 228903-1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201222082.htm

    TIAN Li-xin, HE Ying-huan, HUANG Yi. A novel local-world-like evolving bipartite network model[J]. Acta Physica Sinica, 2012, 61 (22): 228903-1-7. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201222082.htm
    [24] 胡一竑, 朱道立, 李阳, 等. 成本驱动的加权网络演变模型[J]. 复杂系统与复杂性科学, 2009, 6 (2): 26-32. https://www.cnki.com.cn/Article/CJFDTOTAL-FZXT200902005.htm

    HU Yi-hong, ZHU Dao-li, LI Yang, et al. Cost-driven weighted complex networks evolution mode[J]. Complex Systems and Complexity Science, 2009, 6 (2): 26-32. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FZXT200902005.htm
    [25] 苏凯, 汪李峰, 张卓. 一种灵活的加权复杂网络演化模型及其仿真[J]. 系统仿真学报, 2009, 21 (1): 266-271. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ200901063.htm

    SU Kai, WANG Li-feng, ZHANG Zhuo. Flexible weighted complex network evolving model and simulation[J]. Journal of System Simulation, 2009, 21 (1): 266-271. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ200901063.htm
    [26] 施骋. 我国煤炭价格形成机制及其影响因素研究[D]. 北京: 北京交通大学, 2015.

    SHI Pin. Analysis on coal price forming mechanism in China and its influencing factors[D]. Beijing: Beijing Jiaotong University, 2015. (in Chinese).
    [27] 王喜莲, 陈亚军, 张金锁, 等. 煤炭价格预测模型及实证[J]. 统计与决策, 2008 (17): 118-119. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJC200817044.htm

    WANG Xi-lian, CHEN Ya-jun, ZHANG Jin-suo, et al. Forecasting model of coal price and its empirical study[J]. Statistics and Decision, 2008 (17): 118-119. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJC200817044.htm
    [28] 邹绍辉, 张金锁. 我国煤炭价格变动模型实证研究[J]. 煤炭学报, 2010, 35 (3): 525-528. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201003047.htm

    ZOU Shao-hui, ZHANG Jin-suo. The empirical study on variable models of coal price in China[J]. Journal of China Coal Society, 2010, 35 (3): 525-528. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201003047.htm
    [29] 王喜莲. 陕西省煤炭价格的模拟与预测研究[J]. 管理学报, 2008, 5 (5): 682-684, 702. https://www.cnki.com.cn/Article/CJFDTOTAL-GLXB200805018.htm

    WANG Xi-lian. Simulation and forecast of the coal price in Shaanxi Province[J]. Chinese Journal of Management, 2008, 5 (5): 682-684, 702. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLXB200805018.htm
    [30] 唐志鹏, 王亮, 刘卫东, 等. 我国区域闭合性煤炭流的时空分析[J]. 自然资源学报, 2010, 25 (8): 1332-1339. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX201008010.htm

    TANG Zhi-peng, WANG Liang, LIU Wei-dong, et al. A temporal and spatial analysis of regional coal transportation of closed loop in China[J]. Journal of Natural Resources, 2010, 25 (8): 1332-1339. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX201008010.htm
    [31] BAI J S, PERRON P. Estimating and testing linear models with multiple structural changes[J]. Econometrica, 1998, 66 (1): 47-78.
    [32] BAI J S, PERRON P. Computation and analysis of multiple structural change models[J]. Journal of Applied Econometrics, 2003, 18 (1): 1-22.
    [33] 王亚奇, 王静, 杨海滨. 基于复杂网络理论的微博用户关系网络演化模型研究[J]. 物理学报, 2014, 63 (20): 208902-1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201420056.htm

    WANG Ya-qi, WANG Jing, YANG Hai-bin. An evolution model of microblog user relationship networks based on complex network theory[J]. Acta Physica Sinica, 2014, 63 (20): 208902-1-7. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201420056.htm
    [34] 胡枫, 赵海兴, 何佳倍, 等. 基于超图结构的科研合作网络演化模型[J]. 物理学报, 2013, 62 (19): 198901-1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201319076.htm

    HU Feng, ZHAO Hai-xing, HE Jia-bei, et al. An evolving model for hypergraph-structure-based scientific collaboration networks[J]. Acta Physica Sinica, 2013, 62 (19): 198901-1-8. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201319076.htm
    [35] 张小娟, 王旭峰. 一种通信网络节点重要性的计算公式[J]. 东北大学学报(自然科学版), 2014, 35 (5): 663-666. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201405013.htm

    ZHANG Xiao-juan, WANG Xu-feng. Evaluation formula for communication network node importance[J]. Journal of Northeastern University (Natural Science), 2014, 35 (5): 663-666. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201405013.htm
    [36] HOLME P, KIM B. Attack vulnerability of complex networks[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2002, 65 (5): 056109-1-14.
    [37] BARRAT A, BARTHELMY M, VESPIGNANI A. Modeling the evolution of weighted networks[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2004, 70 (6): 066149-1-12.
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  819
  • HTML全文浏览量:  235
  • PDF下载量:  361
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-22
  • 刊出日期:  2019-06-25

目录

    /

    返回文章
    返回