-
摘要: 为了研究中国煤炭运输网络的演变规律和内在作用机制, 借鉴复杂网络的建模思想, 提出了综合煤炭价格成本和运输成本选择机制的煤炭运输网络演化模型, 并通过调节模型参数, 分析了其对网络特性的影响; 为反映煤炭价格动态波动对节点选择的影响, 构建了服务于演化模型的煤炭价格波动函数; 采用1998年中国煤炭运输数据进行仿真计算, 并将仿真结果与2016年中国煤炭运输网络特性进行对比, 以验证提出的煤炭运输网络演化模型的合理性。研究结果表明: 节点强度比节点度更适合用于分析中国煤炭运输网络特性; 中国煤炭运输网络为异配网络, 移走少数高强度节点会严重影响网络的连通性, 增加煤炭运输进口节点会减小移走少数高强度节点对网络的影响; 增加煤炭运输出口节点能提高中国煤炭运输网络的可靠性, 能大大提高山东、辽宁等地区的港口潜力, 带动地区经济发展; 增加煤炭运输进口节点会使中国东南部沿海地区和中部地区成为关键节点, 也能提高中国煤炭运输网络的可靠性, 但网络抗毁性会减弱, 网络中关键节点与非关键节点连接的倾向性会逐渐减弱, 网络的传递性和紧密程度表现为先升高后降低的趋势。可见, 在增加煤炭运输进出口节点的同时, 应加强对煤炭运输网络的整体规划和对枢纽地区的建设和管理, 合理引导煤炭运输资源配置, 以提高中国煤炭运输网络的整体性能。Abstract: To investigate the evolution rules and intrinsic mechanisms of coal transportation network of China, a coal transportation network evolution model based on the coal price cost and transportation cost selection mechanism was proposed referring to the modeling ideas of complex networks. Through adjusting the model parameters, the influences of model parameters on the network characteristics were analyzed. To reflect the effect of dynamic fluctuation in coal price on node selection, a coal price fluctuation function was constructed to serve the evolution model. The simulating calculation was conducted through the coal transportation data of China in 1998, and the simulation results were compared with the coal transportation network characteristics of China in 2016 to verify the rationality of the proposed coal transportation network evolution model. Research result shows that the node strength is more suitable for analyzing the characteristics of coal transportation network of China than the node degree. The coal transportation network of China is a heterogeneous network. Removing a few nodes with high strength will severely affect the network connectivity. Increasing importing nodes of coal transportation will reduce the impact of removing a few nodes with high strength on the network. Increasing exporting nodes of coal transportation can enhance the reliability of coal transportation network of China, improve the potential of ports in the areas such as Shandong and Liaoning, and drive the regional economic development. Increasing importing nodes of coal transportation can make the southeast coast region and central region of China critical nodes, and also enhance the reliability of coal transportation network of China, but will weaken the network invulnerability and the tendency of critical nodes connecting with non-critical nodes. The transmission and tightness of network will show a tendency of increasing first and then decreasing. Thus, when increasing importing and exporting nodes of coal transportation, the overall planning of coal transportation network and the construction and management of hub areas should be strengthened. The coal transportation resource allocation should be rationally guided, so as to improve the overall performance of coal transportation network of China.
-
表 1 需求节点与供给节点坐标和煤炭价格
Table 1. Coordinates of demand and supply nodes and coal prices
供需节点 节点坐标(Xi, Yi) 煤炭价格(1998) / (元·t-1) 煤炭运出量(1998) /104 t 煤炭运出量(1997) /104 t 北京 (116.40, 39.90) 111 547 691 天津 (117.20, 39.12) 123 51 37 河北 (114.52, 38.05) 133 3 646 4 271 山西 (112.55, 37.87) 98 19 972 22 174 内蒙古 (111.73, 40.83) 121 4 327 4 825 辽宁 (123.43, 41.80) 131 2 954 3 118 吉林 (125.32, 43.90) 122 1 604 1 849 黑龙江 (126.53, 45.80) 111 5 589 6 911 上海 (121.47, 31.23) 232 18 55 江苏 (118.78, 32.07) 323 1 192 1 356 浙江 (120.15, 30.28) 333 29 53 安徽 (117.25, 31.83) 222 3 337 3 255 福建 (119.30, 26.08) 323 401 382 江西 (115.85, 28.68) 321 842 863 山东 (116.98, 36.67) 212 3 858 3 631 河南 (113.62, 34.75) 164 5 290 5 706 湖北 (114.30, 30.60) 212 17 37 湖南 (112.93, 28.23) 222 1 057 1 223 广东 (113.27, 23.13) 341 474 505 广西 (108.37, 22.82) 424 350 386 海南 (110.32, 20.03) 513 4 5 重庆 (106.55, 29.57) 123 888 四川 (104.07, 30.67) 211 1 530 2 748 贵州 (106.63, 26.65) 102 1 552 1 316 云南 (102.72, 25.05) 222 620 664 陕西 (108.93, 34.27) 107 1 263 1 846 甘肃 (103.82, 36.07) 200 650 711 青海 (101.78, 36.62) 248 100 121 宁夏 (106.28, 38.47) 248 1 076 1 147 新疆 (87.62, 43.82) 300 457 459 表 2 模型模拟与2016中国年煤炭运输网络运输量差值
Table 2. Differences of traffic volumes between model simulation and coal transportation network of China in 2016
节点对 新疆—云南 内蒙古—黑龙江 陕西—湖北 河南—福建 广西—云南 煤炭运输网络运输量差值/104 t -2 5 5 2 -3 差值占实际线路运输量的比例/% -2.76 1.03 1.96 2.55 -2.30 表 3 a、b取值不同时代表的含义
Table 3. Represented implications of a and b when given different values
a、b取值 含义 a=0.7, b=0.8 中国现实煤炭运输网络 a=0.7, b=0.7 保持煤炭运输进口节点不变, 增加煤炭运输出口节点 a=0.5, b=0.8 保持煤炭运输出口节点不变, 增加煤炭运输进口节点 -
[1] 程风禹, 刘金妹, 翟补栓. 浅析山西煤炭外运发展现状[J]. 物流科技, 2009 (4): 12-14. doi: 10.3969/j.issn.1002-3100.2009.04.005CHENG Feng-yu, LIU Jin-mei, ZHAI Bu-shuan. The analysis of the actuality of shipping out its coal of Shanxi[J]. Logistics Sci-Tech, 2009 (4): 12-14. (in Chinese). doi: 10.3969/j.issn.1002-3100.2009.04.005 [2] 管小俊. 煤炭物流运输网络绩效评价研究[J]. 物流技术, 2011, 30 (8): 36-38. https://www.cnki.com.cn/Article/CJFDTOTAL-WLJS201115012.htmGUAN Xiao-jun. Performance evaluation for coal logistics transportation network[J]. Logistics Technology, 2011, 30 (8): 36-38. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WLJS201115012.htm [3] 张玉韩, 侯华丽. 1991-2010年中国煤炭铁路交流格局变迁[J]. 地域研究与开发, 2016, 35 (2): 19-23, 35. doi: 10.3969/j.issn.1003-2363.2016.02.004ZHANG Yu-han, HOU Hua-li. Railway coal flow in China from 1991 to 2010: spatial configuration and its evolution[J]. Areal Research and Development, 2016, 35 (2): 19-23, 35. (in Chinese). doi: 10.3969/j.issn.1003-2363.2016.02.004 [4] 乔金锁, 王喜富, 沈喜生, 等. 基于复杂网络理论的山西煤炭运输网络复杂性分析[J]. 北京交通大学学报, 2013, 37 (3): 127-132. doi: 10.3969/j.issn.1673-0291.2013.03.024QIAO Jin-suo, WANG Xi-fu, SHEN Xi-sheng, et al. Complexity analysis of Shanxi coal transportation network based on complex network theory[J]. Journal of Beijing Jiaotong University, 2013, 37 (3): 127-132. (in Chinese). doi: 10.3969/j.issn.1673-0291.2013.03.024 [5] 成升魁, 徐增让, 沈镭. 我国省际煤炭资源流动的时空演变及驱动力[J]. 地理学报, 2008, 63 (6): 603-612. doi: 10.3321/j.issn:0375-5444.2008.06.005CHENG Sheng-kui, XU Zeng-rang, SHEN Lei. Spatial-temporal process and driving force of interprovincial coal flowing in China[J]. Acta Geographica Sinica, 2008, 63 (6): 603-612. (in Chinese). doi: 10.3321/j.issn:0375-5444.2008.06.005 [6] 王成金, 莫辉辉, 王姣娥. 中国煤炭资源流动格局及流场规律研究[J]. 自然资源学报, 2009, 24 (8): 1402-1411. doi: 10.3321/j.issn:1000-3037.2009.08.009WANG Cheng-jin, MO Hui-hui, WANG Jiao-e. Regularity and pattern of Chinese coal resources flow field[J]. Journal of Natural Resources, 2009, 24 (8): 1402-1411. (in Chinese). doi: 10.3321/j.issn:1000-3037.2009.08.009 [7] 赵媛, 于鹏. 我国煤炭资源空间流动的基本格局与流输通道[J]. 经济地理, 2007, 27 (2): 196- 200. doi: 10.3969/j.issn.1000-8462.2007.02.005ZHAO Yuan, YU Peng. The spatial pattern of coal flow and flowing channel in China[J]. Economic Geography, 2007, 27 (2): 196-200. (in Chinese). doi: 10.3969/j.issn.1000-8462.2007.02.005 [8] 王成金, 王伟. 中国港口煤炭进出口格局演变及动力机制[J]. 资源科学, 2016, 38 (4): 631-644. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201604006.htmWANG Cheng-jin, WANG Wei. Development of import-export coal trade by port on mainland China: spatial pattern, evolution and dynamics[J]. Resources Science, 2016, 38 (4): 631-644. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201604006.htm [9] 嵇昊威, 赵媛. 中国煤炭铁路运输网络可达性空间格局研究[J]. 地域研究与开发, 2014, 3 (1): 6-11. doi: 10.3969/j.issn.1003-2363.2014.01.002JI Hao-wei, ZHAO Yuan. The accessibility spatial pattern of coal railway transport network in China[J]. Areal Research and Development, 2014, 3 (1): 6-11. (in Chinese). doi: 10.3969/j.issn.1003-2363.2014.01.002 [10] 乔金锁, 王喜富, 沈喜生, 等. 煤炭运输网络结构鲁棒性评价及应用研究[J]. 交通运输系统工程与信息, 2013, 13 (4): 126-133. doi: 10.3969/j.issn.1009-6744.2013.04.019QIAO Jin-suo, WANG Xi-fu, SHEN Xi-sheng, et al. Robustness evaluation and application of structure of coal transportation network[J]. Journal of Transportation Systems Engineering and Information Technology, 2013, 13 (4): 126-133. (in Chinese). doi: 10.3969/j.issn.1009-6744.2013.04.019 [11] 肖致明. 铁路煤炭运输网络流量分配优化模型研究[J]. 内蒙古科技与经济, 2018 (15): 72-75. doi: 10.3969/j.issn.1007-6921.2018.15.037XIAO Zhi-ming. Research on optimization model of traffic flow distribution in railway coal transportation network[J]. Inner Mongolia Science Technology and Economy, 2018 (15): 72-75. (in Chinese). doi: 10.3969/j.issn.1007-6921.2018.15.037 [12] 陆秋琴, 靳超. 煤炭运输公路网络可靠性仿真分析[J]. 计算机应用, 2019, 39 (1): 292-297. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201901051.htmLU Qiu-qin, JIN Chao. Reliability simulation analysis of coal transportation road network[J]. Journal of Computer Applications, 2019, 39 (1): 292-297. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201901051.htm [13] WANG Wei, WANG Cheng-jin, JIN Feng-jun. Spatial evolution of coal transportation at coastal ports in China[J]. Journal of Geographical Sciences, 2018, 28 (2): 238-256. doi: 10.1007/s11442-018-1470-4 [14] 姜巍, 高卫东, 张敏. 中国煤炭资源铁路流通网络结构特征及其演变[J]. 经济地理, 2013, 33 (1): 98-104. https://www.cnki.com.cn/Article/CJFDTOTAL-JJDL201301015.htmJIANG Wei, GAO Wei-dong, ZHANG Min. China coal resource railway circulation network's structural characteristic and evolvement[J]. Economic Geography, 2013, 33 (1): 98-104. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JJDL201301015.htm [15] WATTS D J, STROGATZ S H. Collective dynamics of 'small-world' networks[J]. Nature, 1998, 4: 440. [16] KRAPIVSKY P L, REDNER S, LEYVRAZ F. Connectivity of growing random networks[J]. Physical Review Letters, 2000, 85 (21): 4629-4632. doi: 10.1103/PhysRevLett.85.4629 [17] ZADOROZHNYI V N, YUDIN E B. Growing network: models following nonlinear preferential attachment rule[J]. Physica A: Stastical Mechanics and its Applications, 2015, 428 (15): 111-132. [18] RUI Y K, BAN Y F, WANG J C, et al. Exploring the patterns and evolution of self-organized urban street networks through modeling[J]. The European Physical Journal B, 2013, 86: 1-8. doi: 10.1140/epjb/e2012-30793-6 [19] YOOK S H, JEONG H, BARABASI A L, et al. Weighted evolving networks[J]. Physical Review Letters, 2001, 86 (25): 5835-5838. doi: 10.1103/PhysRevLett.86.5835 [20] LI Chun-gang, CHEN Guan-rong. A comprehensive weighted evolving network model[J]. Physics A: Statistical Mechanics and its Applications, 2004, 343: 288-294. doi: 10.1016/j.physa.2004.06.160 [21] 王锋, 张舒玮. 基于状态空间模型的我国煤炭价格长期趋势预测[J]. 统计与信息论坛, 2011, 26 (8): 67-72. https://www.cnki.com.cn/Article/CJFDTOTAL-TJLT201108013.htmWANG Feng, ZHANG Shu-wei. Forecasting long-run coal price in China: based on the state space model[J]. Statistics and Information Forum, 2011, 26 (8): 67-72. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJLT201108013.htm [22] WU Li-xuan, HUANG Zhong-xiang, WANG Yu-lan, et al. A dynamic evolution model of disequilibrium network traffic flow with quantity regulation of congestion[J]. Journal of Traffic and Transportation Engineering, 2018, 18 (3): 167-179. [23] 田立新, 贺莹环, 黄益. 一种新型二分网络类局域世界演化模型[J]. 物理学报, 2012, 61 (22): 228903-1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201222082.htmTIAN Li-xin, HE Ying-huan, HUANG Yi. A novel local-world-like evolving bipartite network model[J]. Acta Physica Sinica, 2012, 61 (22): 228903-1-7. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201222082.htm [24] 胡一竑, 朱道立, 李阳, 等. 成本驱动的加权网络演变模型[J]. 复杂系统与复杂性科学, 2009, 6 (2): 26-32. https://www.cnki.com.cn/Article/CJFDTOTAL-FZXT200902005.htmHU Yi-hong, ZHU Dao-li, LI Yang, et al. Cost-driven weighted complex networks evolution mode[J]. Complex Systems and Complexity Science, 2009, 6 (2): 26-32. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FZXT200902005.htm [25] 苏凯, 汪李峰, 张卓. 一种灵活的加权复杂网络演化模型及其仿真[J]. 系统仿真学报, 2009, 21 (1): 266-271. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ200901063.htmSU Kai, WANG Li-feng, ZHANG Zhuo. Flexible weighted complex network evolving model and simulation[J]. Journal of System Simulation, 2009, 21 (1): 266-271. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ200901063.htm [26] 施骋. 我国煤炭价格形成机制及其影响因素研究[D]. 北京: 北京交通大学, 2015.SHI Pin. Analysis on coal price forming mechanism in China and its influencing factors[D]. Beijing: Beijing Jiaotong University, 2015. (in Chinese). [27] 王喜莲, 陈亚军, 张金锁, 等. 煤炭价格预测模型及实证[J]. 统计与决策, 2008 (17): 118-119. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJC200817044.htmWANG Xi-lian, CHEN Ya-jun, ZHANG Jin-suo, et al. Forecasting model of coal price and its empirical study[J]. Statistics and Decision, 2008 (17): 118-119. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJC200817044.htm [28] 邹绍辉, 张金锁. 我国煤炭价格变动模型实证研究[J]. 煤炭学报, 2010, 35 (3): 525-528. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201003047.htmZOU Shao-hui, ZHANG Jin-suo. The empirical study on variable models of coal price in China[J]. Journal of China Coal Society, 2010, 35 (3): 525-528. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201003047.htm [29] 王喜莲. 陕西省煤炭价格的模拟与预测研究[J]. 管理学报, 2008, 5 (5): 682-684, 702. https://www.cnki.com.cn/Article/CJFDTOTAL-GLXB200805018.htmWANG Xi-lian. Simulation and forecast of the coal price in Shaanxi Province[J]. Chinese Journal of Management, 2008, 5 (5): 682-684, 702. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLXB200805018.htm [30] 唐志鹏, 王亮, 刘卫东, 等. 我国区域闭合性煤炭流的时空分析[J]. 自然资源学报, 2010, 25 (8): 1332-1339. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX201008010.htmTANG Zhi-peng, WANG Liang, LIU Wei-dong, et al. A temporal and spatial analysis of regional coal transportation of closed loop in China[J]. Journal of Natural Resources, 2010, 25 (8): 1332-1339. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX201008010.htm [31] BAI J S, PERRON P. Estimating and testing linear models with multiple structural changes[J]. Econometrica, 1998, 66 (1): 47-78. [32] BAI J S, PERRON P. Computation and analysis of multiple structural change models[J]. Journal of Applied Econometrics, 2003, 18 (1): 1-22. [33] 王亚奇, 王静, 杨海滨. 基于复杂网络理论的微博用户关系网络演化模型研究[J]. 物理学报, 2014, 63 (20): 208902-1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201420056.htmWANG Ya-qi, WANG Jing, YANG Hai-bin. An evolution model of microblog user relationship networks based on complex network theory[J]. Acta Physica Sinica, 2014, 63 (20): 208902-1-7. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201420056.htm [34] 胡枫, 赵海兴, 何佳倍, 等. 基于超图结构的科研合作网络演化模型[J]. 物理学报, 2013, 62 (19): 198901-1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201319076.htmHU Feng, ZHAO Hai-xing, HE Jia-bei, et al. An evolving model for hypergraph-structure-based scientific collaboration networks[J]. Acta Physica Sinica, 2013, 62 (19): 198901-1-8. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201319076.htm [35] 张小娟, 王旭峰. 一种通信网络节点重要性的计算公式[J]. 东北大学学报(自然科学版), 2014, 35 (5): 663-666. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201405013.htmZHANG Xiao-juan, WANG Xu-feng. Evaluation formula for communication network node importance[J]. Journal of Northeastern University (Natural Science), 2014, 35 (5): 663-666. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201405013.htm [36] HOLME P, KIM B. Attack vulnerability of complex networks[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2002, 65 (5): 056109-1-14. [37] BARRAT A, BARTHELMY M, VESPIGNANI A. Modeling the evolution of weighted networks[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2004, 70 (6): 066149-1-12.