留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑网络拥堵与系统公平的车载异构网络选择方法

李骁驰 徐志刚 陈婷 赵祥模

李骁驰, 徐志刚, 陈婷, 赵祥模. 考虑网络拥堵与系统公平的车载异构网络选择方法[J]. 交通运输工程学报, 2019, 19(3): 178-190. doi: 10.19818/j.cnki.1671-1637.2019.03.018
引用本文: 李骁驰, 徐志刚, 陈婷, 赵祥模. 考虑网络拥堵与系统公平的车载异构网络选择方法[J]. 交通运输工程学报, 2019, 19(3): 178-190. doi: 10.19818/j.cnki.1671-1637.2019.03.018
LI Xiao-chi, XU Zhi-gang, CHEN Ting, ZHAO Xiang-mo. Heterogeneous vehicular network selection method considering network congestion and system fairness[J]. Journal of Traffic and Transportation Engineering, 2019, 19(3): 178-190. doi: 10.19818/j.cnki.1671-1637.2019.03.018
Citation: LI Xiao-chi, XU Zhi-gang, CHEN Ting, ZHAO Xiang-mo. Heterogeneous vehicular network selection method considering network congestion and system fairness[J]. Journal of Traffic and Transportation Engineering, 2019, 19(3): 178-190. doi: 10.19818/j.cnki.1671-1637.2019.03.018

考虑网络拥堵与系统公平的车载异构网络选择方法

doi: 10.19818/j.cnki.1671-1637.2019.03.018
基金项目: 

国家重点研发计划项目 2018YFB0105104

教育部-中国移动联合实验室建设项目 教技司(2016)477号

陕西省重点研发计划项目 2018ZDCXL-GY-05-02

中央高校基本科研业务费专项资金项目 300102248105

详细信息
    作者简介:

    李骁驰(1991-), 男, 河南郑州人, 长安大学工学博士研究生, 从事车联网研究

    赵祥模(1966-), 男, 重庆大足人, 长安大学教授, 工学博士

  • 中图分类号: U491.51

Heterogeneous vehicular network selection method considering network congestion and system fairness

More Information
  • 摘要: 利用演化博弈的有限理智特性执行网络选择, 以实现车载异构网络系统中网络资源的均衡分配; 利用双层博弈对演化博弈方法进行优化, 保证极端拥堵中部分车辆消息传输的同时, 维持系统公平; 设计了专用短程通信、长期演进和无线局域网融合的车载异构网络仿真场景, 对比了基于多准则决策的传统方法、基于演化博弈的网络选择方法和基于双层博弈的网络选择方法。仿真结果表明: 采用基于演化博弈和双层博弈的车载异构网络选择方法首次解决了动态网络环境中车载异构网络切换时出现的大规模乒乓效应, 利用双层博弈能够实现拥堵抑制和系统公平; 采用基于双层博弈的网络选择方法能够驱动异构网络系统在2~3个切换周期内实现网络系统状态的稳定; 在预设的动态网络评价条件下与80个终端的一般场景中, 双层博弈终端平均网络评价指标高于演化博弈19.5%, 为3种网络协同工作提供可靠服务; 在190个终端极端拥堵场景中, 终端合理分配, 共享专用短程通信网络资源, 双层博弈终端平均网络评价指标高于演化博弈10.3%, 双层博弈专用短程通信网络评价指标为演化博弈的2.18倍, 可以保证车联网基本安全信息的广播、系统的公平并维系基本车联网服务。

     

  • 图  1  车载异构网络系统拓扑结构

    Figure  1.  Topological structure of heterogeneous vehicular network system

    图  2  终端数量与网络评价指标的关系

    Figure  2.  Relationship between terminal number and network evaluation index

    图  3  仿真平台功能模块

    Figure  3.  Function modules of simulation platform

    图  4  基于演化博弈的网络选择方法流程

    Figure  4.  Flow of network selection method based on evolutionary game

    图  5  基于演化博弈的网络选择方法仿真结果

    Figure  5.  Simulation results of network selection method based on evolutionary game

    图  6  基于多准则决策的网络选择方法仿真结果

    Figure  6.  Simulation results of network selection method based on MCDM

    图  7  演化博弈和MCDM方法终端平均网络评价指标

    Figure  7.  Terminal average network evaluation indexes between evolutionary game and MCDM method

    图  8  基于双层博弈的网络选择方法

    Figure  8.  Network selection method based on two-layer game

    图  9  一般场景下基于演化博弈的网络选择方法仿真结果

    Figure  9.  Simulation results of network selection method based on evolutionary game in regular scenario

    图  10  一般场景下基于双层博弈的网络选择方法仿真结果

    Figure  10.  Simulation results of network selection method based on two-layer game in regular scenario

    图  11  一般场景下双层博弈和演化博弈终端平均网络评价指标

    Figure  11.  Average network evaluation indexes between two-layer game and evolutionary game in regular scenario

    图  12  拥堵场景下基于演化博弈的网络选择方法仿真结果

    Figure  12.  Simulation results of network selection method based on evolutionary game in congestion scenario

    图  13  拥堵场景下基于双层博弈的网络选择方法仿真结果

    Figure  13.  Simulation results of network selection method based on two-layer game in congestion scenario

    图  14  拥堵场景下双层博弈和演化博弈终端平均网络评价指标

    Figure  14.  Average network evaluation indexes between two-layer game and evolutionary game in congestion scenario

    图  15  拥堵场景下双层博弈和演化博弈方法公平性对比

    Figure  15.  Equality comparison between two-layer game and evolutionary game in congestion scenario

    图  16  接入网络的随机向量参数

    Figure  16.  Random vector parameters of access networks

    图  17  随机性能场景下基于双层博弈的终端数量

    Figure  17.  Fig. 17 Terminal numbers based on two-layer game in random-performance scenario

    图  18  随机性能场景下基于双层博弈的网络评价指标

    Figure  18.  Network evaluation indexes based on two-layer game in random-performance scenario

  • [1] 赵祥模, 惠飞, 史昕, 等. 泛在交通信息服务系统的概念、架构与关键技术[J]. 交通运输工程学报, 2014, 14 (4): 105-115. http://transport.chd.edu.cn/article/id/201404013

    ZHAO Xiang-mo, HUI Fei, SHI Xin, et al. Concept, architecture and challenging technologies of ubiquitous traffic information service system[J]. Journal of Traffic and Transportation Engineering, 2014, 14 (4): 105-115. (in Chinese). http://transport.chd.edu.cn/article/id/201404013
    [2] KENNEY J B. Dedicated short-range communications (DSRC) standards in the United States[J]. Proceedings of the IEEE, 2011, 99 (7): 1162-1182. doi: 10.1109/JPROC.2011.2132790
    [3] XU Zhi-gang, LI Xiao-chi, ZHAO Xiang-mo, et al. DSRC versus 4G-LTE for connected vehicle applications: a study on field experiments of vehicular communication performance[J]. Journal of Advanced Transportation, 2017, 2017: 1-10.
    [4] SU K C, WU H M, CHANG W L, et al. Vehicle-to-vehicle communication system through Wi-Fi network using android smartphone[C]//IEEE. 2012 International Conference on Connected Vehicles and Expo (ICCVE). New York: IEEE, 2013: 191-196.
    [5] HOSSAIN E, CHOW G, LEUNG V C M, et al. Vehicular telematics over heterogeneous wireless networks: a survey[J]. Computer Communications, 2010, 33 (7): 775-793. doi: 10.1016/j.comcom.2009.12.010
    [6] YLIANTTILA M, PANDE M, MÄKELÄ J, et al. Optimization scheme for mobile users performing vertical handoffs between IEEE 802.11 and GPRS/EDGE networks[C]//IEEE. IEEE Global Telecommunications Conference. New York: IEEE, 2001: 3439-3443.
    [7] BUDDHIKOT M, CHANDRANMENON G, HAN S, et al. Integration of 802.11 and third-generation wireless data networks[C]//IEEE. The Conference on Computer Communications—22nd Annual Joint Conference of the IEEE Computer and Communications Societies. New York: IEEE, 2003: 503-512.
    [8] HAIDER A, GONDAL I, KAMRUZZAMAN J. Dynamic dwell timer for hybrid vertical handover in 4G coupled networks[C]//IEEE. 2011 IEEE 73rd Vehicular Technology Conference (VTC Spring). New York: IEEE, 2011: 1-5.
    [9] NIYATO D, HOSSAIN E. Dynamics of network selection in heterogeneous wireless networks: an evolutionary game approach[J]. IEEE Transactions on Vehicular Technology, 2009, 58 (4): 2008-2017. doi: 10.1109/TVT.2008.2004588
    [10] MA Dong, MA Mao-de. A QoS-based vertical handoff scheme for interworking of WLAN and WiMAX[C]//IEEE. GLOBECOM—IEEE Global Telecommunications Conference. New York: IEEE, 2009: 1-6.
    [11] SEPULCRE M, GOZALVEZ J, ALTINTAS O, et al. Context-aware heterogeneous V2I communications[C]//IEEE. 7th International Workshop on Reliable Networks Design and Modeling. New York: IEEE, 2015: 295-300.
    [12] TIAN Da-xin, ZHOU Jian-shan, WANG Yun-peng, et al. A dynamic and self-adaptive network selection method for multimode communications in heterogeneous vehicular telematics[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16 (6): 3033-3049. doi: 10.1109/TITS.2015.2422144
    [13] MARQUEZ-BARJA J M, AHMADI H, TORNELL S M, et al. Breaking the vehicular wireless communications barriers: vertical handover techniques for heterogeneous networks[J]. IEEE Transactions on Vehicular Technology, 2015, 64 (12): 5878-5890. doi: 10.1109/TVT.2014.2386911
    [14] WANG Shang-guang, FAN Cun-qun, HSU Ching-hsien, et al. A vertical handoff method via self-selection decision tree for internet of vehicles[J]. IEEE Systems Journal, 2016, 10 (3): 1183-1192. doi: 10.1109/JSYST.2014.2306210
    [15] AWAD A, MOHAMED A, CHIASSERINI C F. Dynamic network selection in heterogeneous wireless networks: a user-centric scheme for improved delivery[J]. IEEE Consumer Electronics Magazine, 2017, 6 (1): 53-60. doi: 10.1109/MCE.2016.2614419
    [16] KIM S. Fog radio access network system control scheme based on the embedded game model[J]. Eurasip Journal on Wireless Communications and Networking, 2017, 2017 (1): 1-5. doi: 10.1186/s13638-016-0795-x
    [17] AGRAWAL S, TYAGI N, MISRA A K. Seamless VANET connectivity through heterogeneous wireless network on rural highways[C]//ACM. 2nd International Conference on Information and Communication Technology for Competitive Strategies. New York: ACM, 2016: 1-5.
    [18] DEY K C, RAYAMAJHI A, CHOWDHURY M, et al. Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication in a heterogeneous wireless network—performance evaluation[J]. Transportation Research Part C: Emerging Technologies, 2016, 68: 168-184. doi: 10.1016/j.trc.2016.03.008
    [19] SYFULLAH M, LIMJ M Y. Data broadcasting on Cloud-VANET for IEEE 802.11p and LTE hybrid VANET architectures[C]//IEEE. 3rd IEEE International Conference on Computational Intelligence and Communication Technology. New York: IEEE, 2017: 1-6.
    [20] CHARITOS M, KALIVAS G. MIMO HetNet IEEE 802.11p-LTE deployment in a vehicular urban environment[J]. Vehicular Communications, 2017, 9: 222-232. doi: 10.1016/j.vehcom.2016.12.004
    [21] SALVO P, TURCANU I, CUOMO F, et al. Heterogeneous cellular and DSRC networking for floating car data collection in urban areas[J]. Vehicular Communications, 2017, 8: 21-34.
    [22] CHANG C J, TSAI T L, CHEN Y H. Utility and game-theory based network selection scheme in heterogeneous wireless networks[C]//IEEE. 2009 IEEE Wireless Communications and Networking Conference. New York: IEEE, 2009: 2846-2850.
    [23] ZHU Kun, NIYATO D, WANG Ping. Network selection in heterogeneous wireless networks: evolution with incomplete information[C]//IEEE. IEEE Wireless Communications and Networking Conference. New York: IEEE, 2010: 1-6.
    [24] PERVAIZ H, MEI Hai-bo, BIGHAM J, et al. Enhanced cooperation in heterogeneous wireless networks using coverage adjustment[C]//ACM. 6th International Wireless Communications and Mobile Computing Conference. New York: ACM, 2010: 241-245.
    [25] LIU Xing-wei, FANG Xu-ming, CHEN Xu, et al. A bidding model and cooperative game-based vertical handoff decision algorithm[J]. Journal of Network and Computer Applications, 2011, 34 (4): 1263-1271. doi: 10.1016/j.jnca.2011.01.012
    [26] LIU Bin, TIAN Hui, WANG Bin, et al. AHP and game theory based approach for network selection in heterogeneous wireless networks[C]//IEEE. 2014 IEEE 11th Consumer Communications and Networking Conference. New York: IEEE, 2014: 501-506.
    [27] CAMPOLO C, VINEL A, MOLINARO A, et al. Modeling broadcasting in IEEE 802.11p/WAVE vehicular networks[J]. IEEE Communications letters, 2011, 15 (2): 199-201.
    [28] VINEL A. 3GPP LTE versus IEEE 802.11p/WAVE: which technology is able to support cooperative vehicular safety applications?[J]. IEEE Wireless Communications Letters, 2012, 1 (2): 125-128.
    [29] BALDO N, REQUENA-ESTESO M, NÚÑEZ-MARTÍNEZ J, et al. Validation of the IEEE 802.11 MAC model in the ns3 simulator using the EXTREME testbed[C]//ICST. 3rd International ICST Conference on Simulation Tools and Techniques. Bratislava: ICST, 2010: 1-9.
    [30] HOFBAUER J, SIGMUND K. Evolutionary game dynamics[R]. Laxenburg: IIASA, 2003.
    [31] BAZZI A, MASINI B M, ZANELLA A, et al. On the performance of IEEE 802.11p and LTE-V2V for the cooperative awareness of connected vehicles[J]. IEEE Transactions on Vehicular Technology, 2017, 66 (11): 10419-10432.
  • 加载中
图(18)
计量
  • 文章访问数:  695
  • HTML全文浏览量:  139
  • PDF下载量:  374
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-16
  • 刊出日期:  2019-06-25

目录

    /

    返回文章
    返回