-
摘要: 为了分析沥青混合料横向流动变形, 进行了沥青混合料的车辙试验, 利用布设于沥青混合料板表面的光纤布拉格光栅传感器, 研究了沥青混合料表面的横向应变规律; 以最大应变和蠕变稳定阶段横向应变速率绝对值为评价指标, 分析了沥青混合料横向流动变形。分析结果表明: 横向流动变形随沥青混合料的最大应变和横向应变速率绝对值的减小而降低; 横向流动变形在循环轮载作用下不断发展, 测试点距离轮载愈近其流动变形愈剧烈; 当胶粉掺量分别为0、15%、18%时, 距离轮载63 mm的测试点横向应变速率分别为6.8×10-6、4.0×10-7、6.4×10-6 min-1, 因此, 掺15%胶粉的沥青混合料具有较大的抵抗高温横向流动变形的能力; 对于15%胶粉掺量的沥青混合料, 当其集料级配分别为AC-13粗级配和AC-13细级配时, 距离轮载28 mm的测试点横向应变速率分别为6.0×10-7、7.7×10-6 min-1, 因此, AC-13粗级配沥青混合料高温抗横向流动变形能力优于AC-13细级配; 胶粉改性沥青混合料最大应变为1.96×10-4, 而胶粉和抗车辙剂复合改性沥青混合料最大应变只有1.22×10-4, 说明在高温情况下, 胶粉和抗车辙剂复合改性沥青混合料整体结构强度较大, 能够承受来自轮载的直接作用而不向轮迹两边产生横向推移致使发生较大的横向流动变形。基于光纤布拉格光栅横向应变的沥青混合料横向流动变形评价能较好地说明不同材料和级配对沥青路面产生侧向流动变形规律的影响。Abstract: In order to analyze the lateral flow deformation of asphalt mixture, a rutting test of asphalt mixture was conducted, and the law of lateral strain on the surface of asphalt mixture was researched by using the fiber Bragg grating (FBG) sensor installed on the slab surface of asphalt mixture. With the maximum strain and the absolute value of lateral strain rate in creep stability stage as evaluation indexes, the lateral flow deformation of asphalt mixture was analyzed. Analysis result indicates that the lateral flow deformation decreases with the decreases of both the maximum strain of asphalt mixture and the absolute value of lateral strain rate. The lateral flow deformation develops continuously under the action of cyclic loading. The nearer the test point to the wheel, the heavier its flow deformation is. When the rubber powder contents are 0, 15% and 18%, the lateral strain rates at test point with a distance of 63 mm to the wheel are 6.8×10-6, 4.0×10-7 and 6.4×10-6 min-1, respectively. Therefore, the asphalt mixture with 15% rubber powder content has larger capacity to resist lateral flow deformation in high temperature. For the asphalt mixtures with 15% rubber powder content, when their aggregate gradations are selected as coarse gradation of AC-13 and fine gradation of AC-13, the lateral strain rates at test point with a distance of 28 mm to the wheel are 6.0×10-7 and 7.7×10-6 min-1, respectively, so the anti-lateral flow deformation capability of AC-13 coarse-graded mixture in high temperature is better than that of AC-13 fine-graded mixture. The maximum strain of rubber powder modified asphalt mixture is 1.96×10-4, but for the asphalt mixture modified by rubber powder and rutting resistance additive, the value is only 1.22×10-4, which shows that under the condition of high temperature, the asphalt mixture modified by rubber powder and rutting resistance additive has higher overall structural strength and can bear the direct effect from the wheel load without lateral movement to both sides, which could cause larger lateral flow deformation. The evaluation of lateral flow deformation to asphalt mixture based on the FBG lateral strain can well illustrate the effect of different material and gradation characteristics on the lateral flow deformation of asphalt pavement.
-
Key words:
- pavement material /
- asphalt mixture /
- flow deformation /
- rutting /
- lateral strain /
- FBG
-
表 1 集料级配
Table 1. Aggregate gradations
级配 不同筛孔尺寸(mm) 通过率/% 油石比/% 16 13.2 9.5 4.75 2.36 0.075 AC-13C 100.0 96.9 70.2 41.8 29.1 5.0 4.6 AC-13F 100.0 100.0 78.0 38.0 31.0 3.0 4.8 表 2 车辙试验方案
Table 2. Rutting test schemes
试验编号 A B C D E 胶粉掺量/% 0 15 18 15 15 抗车辙剂掺量/% 0 0 0 0.4 0 最佳沥青用量/% 4.4 4.1 4.0 4.1 4.2 表 3 AC-13C沥青混合料Prony级数
Table 3. Prony serials of AC-13C asphalt mixture
剪切松弛模量比 体积松弛模量比 松弛时间/s 0.602 0 0.93 0.285 0 10.34 0.080 0 797.53 0.032 0 23 500.00 表 4 AC-13C沥青混合料计算参数
Table 4. Calculation parameters of AC-13C asphalt mixture
密度/ (kg·m-3) 弹性模量/MPa 泊松比 2 300 500 0.45 表 5 不同WRP掺量沥青混合料力学参数
Table 5. Mechanical parameters of asphalt mixtures with different WRP contents
WRP掺量/% 动稳定度/ (次·mm-1) 应变稳定阶段拟合曲线 应变速率绝对值/10-6 min-1 F1 F2 F3 F1 F2 F3 0 1 658 ε=7.9t-110.4 ε=6.8t-84.6 ε=3.8t-112.2 7.9 6.8 3.8 15 6 300 ε=-0.6t-163.4 ε=0.4t-179.9 ε=0.5t-85.6 0.6 0.4 0.5 18 2 864 ε=6.4t+282.5 ε=5.3t+244.2 6.4 5.3 表 6 不同级配沥青混合料力学参数
Table 6. Mechanical parameters of asphalt mixtures with different gradations
级配 动稳定度/ (次·mm-1) 应变稳定阶段拟合曲线 应变速率绝对值/10-6 min-1 F1 F2 F3 F1 F2 F3 AC-13C 6 300 ε=-0.6t-163.4 ε=0.4t-179.9 ε=0.5t-85.6 0.6 0.4 0.5 AC-13F 2 520 ε=-7.7t-496.5 ε=-4.3t-188.8 ε=-0.9t-4.9 7.7 4.3 0.9 表 7 复合改性沥青混合料力学参数
Table 7. Mechanical parameters of asphalt mixtures with compound modification
改性类型 动稳定度/ (次·mm-1) 应变稳定阶段拟合曲线 应变速率绝对值/10-6 min-1 F1 F2 F3 F1 F2 F3 无 1 658 ε=7.9t-110.4 ε=6.8 t-84.6 ε=3.8 t-112.2 7.9 6.8 3.8 WRP 6 300 ε=-0.6t-163.4 ε=0.4t-179.9 ε=0.5 t-85.6 0.6 0.4 0.5 RSP+WRP 10 500 ε=-1.3t+131.2 ε=-1.5t+93.4 ε=-2.2t+54.3 1.3 1.5 2.2 -
[1] WANG Hong-chang, LI Guo-fen. Study of factors influencing gussasphalt mixture performance[J]. Construction and Building Materials, 2015, 101: 193-200. doi: 10.1016/j.conbuildmat.2015.10.082 [2] DU Yin-fei, CHEN Jia-qi, HAN Zheng, et al. A review on solutions for improving rutting resistance of asphalt pavement and test methods[J]. Construction and Building Materials, 2018, 168: 893-905. doi: 10.1016/j.conbuildmat.2018.02.151 [3] WANG Hui, ZHANG Qi-sen, TAN Ji-qing. Investigation of layer contributions to asphalt pavement rutting[J]. Journal of Materials in Civil Engineering, 2009, 21 (4): 181-185. doi: 10.1061/(ASCE)0899-1561(2009)21:4(181) [4] 乔英娟, 王抒红, 郭忠印. 基于侧向位移法的沥青路面抗车辙影响因素[J]. 同济大学学报(自然科学版), 2009, 37 (11): 1487-1491. doi: 10.3969/j.issn.0253-374x.2009.11.013QIAO Ying-juan, WANG Shu-hong, GUO Zhong-yin. Influence parameters of asphalt pavement rutting resistance based on lateral displacement method[J]. Journal of Tongji University (Natural Science), 2009, 37 (11): 1487-1491. (in Chinese). doi: 10.3969/j.issn.0253-374x.2009.11.013 [5] ZHU Jing-wen, SUN Li-jun, WANG Yi, et al. Development and calibration of shear-based rutting model for asphalt concrete layers[J]. International Journal of Pavement Engineering, 2017, 18 (10): 937-944. doi: 10.1080/10298436.2016.1138111 [6] 栗培龙, 张争奇, 李洪华, 等. 沥青混合料汉堡车辙试验方法[J]. 交通运输工程学报, 2010, 10 (2): 30-35. doi: 10.3969/j.issn.1671-1637.2010.02.006LI Pei-long, ZHANG Zheng-qi, LI Hong-hua, et al. Methods of Hamburg wheel tracking tests for asphalt mixture[J]. Journal of Traffic and Transportation Engineering, 2010, 10 (2): 30-35. (in Chinese). doi: 10.3969/j.issn.1671-1637.2010.02.006 [7] KIM D, KIM Y R. Development of stress sweep rutting (SSR) test for permanent deformation characterization of asphalt mixture[J]. Construction and Building Materials, 2017, 154: 373-383. doi: 10.1016/j.conbuildmat.2017.07.172 [8] 关永胜, 谈至明, 张志祥. 间断级配橡胶沥青混合料抗车辙性能[J]. 同济大学学报(自然科学版), 2013, 41 (5): 705-709. doi: 10.3969/j.issn.0253-374x.2013.05.012GUAN Yong-sheng, TAN Zhi-ming, ZHANG Zhi-xiang. Rutting performance of gap graded asphalt rubber mixtures[J]. Journal of Tongji University (Natural Science), 2013, 41 (5): 705-709. (in Chinese). doi: 10.3969/j.issn.0253-374x.2013.05.012 [9] DONG Ni-ya, NI Fu-jian, ZHOU Lan, et al. Comparison of the Hamburg, indirect tensile, and multi-sequenced repeated load tests for evaluation of HMA rutting resistance[J]. Construction and Building Materials, 2019, 216: 588-598. doi: 10.1016/j.conbuildmat.2019.04.245 [10] TAYFUR S, OZEN H, AKSOY A. Investigation of rutting performance of asphalt mixtures containing polymer modifiers[J]. Construction and Building Materials, 2007, 21: 328-337. doi: 10.1016/j.conbuildmat.2005.08.014 [11] SAID S F, HAKIM H, OSCARSSON E, et al. Prediction of flow rutting in asphalt concrete layers[J]. International Journal of Pavement Engineering, 2011, 12 (6): 519-532. doi: 10.1080/10298436.2011.559549 [12] JAVILLA B, MO Lian-tong, HAO Fang, et al. Multi-stress loading effect on rutting performance of asphalt mixtures based on wheel tracking testing[J]. Construction and Building Materials, 2017, 148: 1-9. doi: 10.1016/j.conbuildmat.2017.04.182 [13] KHIAVI A K, MANSOORI S. The performance of hot mix asphalt in dynamic and static creep tests[J]. Petroleum Science and Technology, 2017, 35 (15): 1627-1634. doi: 10.1080/10916466.2017.1336773 [14] RUSHING J F, LITTLE D N, GARG N. Selecting a rutting performance test for airport asphalt mixture design[J]. Road Materials and Pavement Design, 2014, 15 (S): 172-194. [15] AL-KHATEEB G G, OBAIDAT TIAS, KHEDAYWI T S, et al. Studying rutting performance of superpave asphalt mixtures using unconfined dynamic creep and simple performance tests[J]. Road Materials and Pavement Design, 2018, 19 (2): 315-333. doi: 10.1080/14680629.2016.1261722 [16] LI Song, NI Fu-jian, ZHAO Zi-li, et al. Fractal evaluation of the rutting development for multilayer pavement by wheel tracking test[J]. Construction and Building Materials, 2019, 222: 706-716. doi: 10.1016/j.conbuildmat.2019.06.073 [17] ZHANG Wei-guang, SHEN Shi-hui, WU Sheng-hua, et al. Prediction model for field rut depth of asphalt pavement based on hamburg wheel tracking test properties[J]. Journal of Materials in Civil Engineering, 2017, 29 (9): 1-10. [18] AL-MOSAWE H, THOM N, AIREY G, et al. Linear viscous approach to predict rut depth in asphalt mixtures[J]. Construction and Building Materials, 2018, 169: 775-793. doi: 10.1016/j.conbuildmat.2017.11.065 [19] 鲁正兰, 孙立军. 沥青路面车辙预估方法的研究[J]. 同济大学学报(自然科学版), 2007, 35 (11): 1476-1480. doi: 10.3321/j.issn:0253-374X.2007.11.007LU Zheng-lan, SUN Li-jun. Research on rutting prediction of asphalt pavement[J]. Journal of Tongji University (Natural Science), 2007, 35 (11): 1476-1480. (in Chinese). doi: 10.3321/j.issn:0253-374X.2007.11.007 [20] JAVILLA B, FANG Hao, MO Lian-tong, et al. Test evaluation of rutting performance indicators of asphalt mixtures[J]. Construction and Building Materials, 2017, 155: 1215-1223. doi: 10.1016/j.conbuildmat.2017.07.164 [21] 朱云升, 郭忠印, 王景. 高温重载条件下沥青混合料的蠕变试验研究[J]. 建筑材料学报, 2008, 11 (5): 545-549. doi: 10.3969/j.issn.1007-9629.2008.05.008ZHU Yun-sheng, GUO Zhong-yin, WANG Jing. Creep test and research on asphalt mixture at high temperature and heavy load[J]. Journal of Building Materials, 2008, 11 (5): 545-549. (in Chinese). doi: 10.3969/j.issn.1007-9629.2008.05.008 [22] GAO Li-bo, WANG Zhe-ren, DENG Chang-ning, et al. Analysis on Effect Factors of Rutting Performance[C]∥ASCE. Proceedings of the 8th International Conference of Chinese Logistics and Transportation Professionals—Logistics. Reston: ASCE, 2008: 3772-3778. [23] ABD-ALLA E S M, MORIYOSHI A, PARTL M N, et al. New wheel tracking test to analyze movements of aggregates in multi-layered asphalt specimens[J]. Journal of the Japan Petroleum Institute, 2006, 49 (5): 274-279. doi: 10.1627/jpi.49.274 [24] KONDO T, MORIYOSHI A, YOSHIDA T, et al. Deformation properties of asphalt mixture on various loading conditions for wheel tracking test[J]. Journal of the Japan Petroleum Institute, 2005, 48 (5): 260-271. doi: 10.1627/jpi.48.260 [25] HU Jing, QIAN Zhen-dong, LIU Yang, et al. High-temperature failure in asphalt mixtures using micro-structural investigation and image analysis[J]. Construction and Building Materials, 2015, 84: 136-145. doi: 10.1016/j.conbuildmat.2014.12.090 [26] BAIRGI B K, TAREFDER R A, AHMED M U. Long-term rutting and stripping characteristics of foamed warm-mix asphalt (WMA) through laboratory and field investigation[J]. Construction and Building Materials, 2018, 170: 790-800. doi: 10.1016/j.conbuildmat.2018.03.055 [27] CHATURABONG P, BAHIA H U. Mechanisms of asphalt mixture rutting in the dry Hamburg Wheel Tracking test and the potential to be alternative test in measuring rutting resistance[J]. Construction and Building Materials, 2017, 146: 175-182. doi: 10.1016/j.conbuildmat.2017.04.080 [28] MA Tao, ZHANG De-yu, ZHANG Yao, et al. Simulation of wheel tracking test for asphalt mixture using discrete element modelling[J]. Road Materials and Pavement Design, 2018, 19 (2): 367-384. doi: 10.1080/14680629.2016.1261725 [29] 李红, 祝连庆, 刘锋, 等. 裸光纤光栅表贴结构应变传递分析与实验研究[J]. 仪器仪表学报, 2014, 35 (8): 1744-1750. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201408009.htmLI Hong, ZHU Lian-qing, LIU Feng, et al. Strain transfer analysis and experimental research of surface-bonded bare FBG[J]. Chinese Journal of Scientific Instrument, 2014, 35 (8): 1744-1750. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201408009.htm [30] 孙阳阳, 王源, 章征林, 等. 表面粘贴式光纤布拉格光栅应变传递规律分析与实验研究[J]. 功能材料, 2016, 47 (7): 7046-7050, 7055. doi: 10.3969/j.issn.1001-9731.2016.07.009SUN Yang-yang, WANG Yuan, ZHANG Zheng-lin, et al. Analysis and experimental research on the principle of surface bonded FBG strain transfer[J]. Journal of Function Materials, 2016, 47 (7): 7046-7050, 7055. (in Chinese). doi: 10.3969/j.issn.1001-9731.2016.07.009