-
摘要: 为了探究钢筋混凝土桥墩在重型车辆撞击下的安全性能, 建立了重型车辆-桥墩碰撞精细有限元模型, 研究了撞击速度、桥墩直径、上部结构边界条件和货物高度对桥墩破坏模式和内力分布的影响; 分析了不同工况下的车辆碰撞力特征, 并基于车辆初始动能耗散特点提出了碰撞力简化模型。分析结果表明: 重型车辆碰撞过程可以分为保险杠、发动机和货物撞击桥墩3个阶段, 碰撞力在前2个阶段主要集中在0.9 m高度处, 而在第3个阶段主要分布在2.7 m高度处; 在重型车辆撞击下, 不仅桥墩端部会出现严重损伤, 碰撞部位附近也可能发生严重的局部冲剪破坏; 由于忽略了碰撞荷载的动力效应和车辆与桥墩的耦合作用, 采用《公路桥涵设计通用规范》 (JTG D60—2015) 中建议的等效静力设计方法难以获得桥墩的实际撞击响应; 撞击速度对桥墩内力和碰撞力的影响最显著, 货物高度的不同会改变碰撞力的空间分布, 但不会影响桥墩的最大内力响应; 重型车辆的初始动能存在6.5 MJ的阈值, 当初始动能小于该阈值时, 车辆发动机和保险杠的碰撞作用对桥墩动力响应起主导作用, 反之, 后部货物的碰撞作用控制碰撞力峰值; 碰撞力简化模型和精细车辆模型预测所得桥墩最大内力响应的相对误差在8%以内, 且计算耗时从6~7 h缩短到4 min。Abstract: To explore the safety of reinforced concrete piers under heavy vehicle collision, a refined finite element (FE) model of heavy vehicle-pier collision was established. The effects of impact velocity, pier diameter, superstructure boundary condition and cargo height on the failure mode and internal force distribution of pier were investigated. The characteristics of vehicle impact force under different conditions were analyzed, and a simplified impact force model was proposed based on the dissipation characteristics of vehicle initial kinetic energy. Analysis result shows that the heavy vehicle collision process can be divided into three stages such as the bumper, engine and cargo collide the pier. The impact force is mainly concentrated at the elevation of 0.9 m in the first two collision stages, and is distributed at the elevation of 2.7 m in the third collision stage. Under the heavy vehicle collision, not only will there be serious damage at the end of pier, but also there may be serious local punching shear damage near the collision site. Due to the neglection to the dynamic effect of impact load and the coupling effect of vehicle and pier, the equivalent static design approach recommended by the General Code for Design of Highway Bridges and Culverts (JTG D60—2015) is difficult to obtain an actual impact response of pier. The impact velocity has the most significant influence on the internal force and impact force of pier. The difference of cargo height changes the spatial distribution of impact force, but will not affect the maximum internal force response of pier. A threshold of 6.5 MJ exists in the initial kinetic energy of heavy vehicle. When the initial kinetic energy is less than the threshold, the impact actions from the vehicle engine and bumper play dominant roles in the dynamic response of pier. On the contrary, the impact action of cargo at the back determines the peak impact force. The relative error of the predicted maximum internal force responses of pier between the simplified impact force model and the refined vehicle model is less than 8%, and the computation time shortens from 6-7 h to 4 min.
-
表 1 桥墩材料力学参数
Table 1. Material mechanical parameters of pier
材料 弹性模量/MPa 密度/ (kg·m-3) 泊松比 抗压强度/MPa 抗拉强度/MPa 屈服强度/MPa 失效主应变 C40混凝土 3.25×104 2 380 0.2 26.8 2.4 HRB400纵筋 2.00×105 7 850 0.3 400 0.12 HRB335箍筋 2.00×105 7 850 0.3 335 0.12 -
[1] 易仁彦, 周瑞峰, 黄茜. 近15年国内桥梁坍塌事故的原因和风险分析[J]. 交通科技, 2015 (5): 61-64. https://www.cnki.com.cn/Article/CJFDTOTAL-SKQB201505020.htmYI Ren-yan, ZHOU Rui-feng, HUANG Qian. Reason and risk of bridge collapse in recent 15 year[J]. Transportation Science and Technology, 2015 (5): 61-64. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SKQB201505020.htm [2] COOK W, BARR P J, HALLING M W. Bridge failure rate[J]. Journal of Performance of Constructed Facilities, 2015, 29 (3): 04014080-1-8. doi: 10.1061/(ASCE)CF.1943-5509.0000571 [3] DO T V, PHAM T M, HAO H. Dynamic responses and failure modes of bridge columns under vehicle collision[J]. Engineering Structures, 2018, 156: 243-259. doi: 10.1016/j.engstruct.2017.11.053 [4] ZHAO Wu-chao, QIAN Jiang, WANG Juan. Performance of bridge structures under heavy goods vehicle impact[J]. Computers and Concrete, 2018, 22 (6): 515-525. [5] XU Liang-jin, LU Xin-zheng, GUAN Hong, et al. Finite-element and simplified models for collision simulation between overheight trucks and bridge superstructures[J]. Journal of Bridge Engineering, 2013, 18 (11): 1140-1151. doi: 10.1061/(ASCE)BE.1943-5592.0000472 [6] HU Bo, LI Guo-qiang. Maximum impact force of truck frontal crashing into antiram bollard systems[J]. Journal of Structural Engineering, 2016, 142 (12): 04016125-1-13. [7] 肖岩, 陈林, 肖果, 等. 防撞柱实车碰撞性能研究[J]. 振动与冲击, 2013, 32 (11): 1-6. doi: 10.3969/j.issn.1000-3835.2013.11.001XIAO Yan, CHEN Lin, XIAO Guo, et al. Tests for anti-ram bollards based on truck collision[J]. Journal of Vibration and Shock, 2013, 32 (11): 1-6. (in Chinese). doi: 10.3969/j.issn.1000-3835.2013.11.001 [8] THILAKARATHNA H M I, THAMBIRATNAM D P, DHANASEKAR M, et al. Numerical simulation of axially loaded concrete columns under transverse impact and vulnerability assessment[J]. International Journal of Impact Engineering, 2010, 37 (11): 1100-1112. doi: 10.1016/j.ijimpeng.2010.06.003 [9] STEEL K, SORENSEN A D. Reliability analysis of a circular bridge pier subject to intentional vehicular impact[C]//BEER M, AU S K, HALL J W. Second International Conference on Vulnerability and Risk Analysis and Management (ICVRAM) and the Sixth International Symposium on Uncertainty, Modeling, and Analysis (ISUMA). Reston: ASCE, 2014: 2702-2709. [10] 王娟, 钱江, 周德源. 城市桥梁下部结构抗重型车辆撞击的数值仿真分析[J]. 湖南大学学报(自然科学版), 2016, 43 (7): 88-95. doi: 10.3969/j.issn.1674-2974.2016.07.012WANG Juan, QIAN Jiang, ZHOU De-yuan. Numerical simulation of urban bridge substructures impacted by heavy vehicles[J]. Journal of Hunan University (Natural Sciences), 2016, 43 (7): 88-95. (in Chinese). doi: 10.3969/j.issn.1674-2974.2016.07.012 [11] 王娟, 钱江, 周德源. 重型车辆撞击桥墩的碰撞力峰值参数分析[J]. 力学季刊, 2016, 37 (2): 337-344. https://www.cnki.com.cn/Article/CJFDTOTAL-SHLX201602023.htmWANG Juan, QIAN Jiang, ZHOU De-yuan. Parametric study on peak impact force for the bridge pier impacted by heavy vehicles[J]. Chinese Quarterly of Mechanics, 2016, 37 (2): 337-344. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SHLX201602023.htm [12] ABDELKARIM O I, ELGAWADY M A. Performance of hollow-core FRP-concrete-steel bridge columns subjected to vehicle collision[J]. Engineering Structures, 2016, 123: 517-531. doi: 10.1016/j.engstruct.2016.05.048 [13] ABDELKARIM O I, ELGAWADY M A. Performance of bridge piers under vehicle collision[J]. Engineering Structures, 2017, 140: 337-352. doi: 10.1016/j.engstruct.2017.02.054 [14] 崔堃鹏, 夏禾, 夏超逸, 等. 汽车撞击桥墩瞬态撞击力的等效静力计算[J]. 振动与冲击, 2014, 33 (4): 48-53, 69. doi: 10.3969/j.issn.1000-3835.2014.04.011CUI Kun-peng, XIA He, XIA Chao-yi, et al. Equivalent static force calculation methods for transient impact force of a vehicle in collision with piers[J]. Journal of Vibration and Shock, 2014, 33 (4): 48-53, 69. (in Chinese). doi: 10.3969/j.issn.1000-3835.2014.04.011 [15] 孟一, 黄方林. 钢筋混凝土柱抗车辆侧向冲击研究[J]. 铁道科学与工程学报, 2017, 14 (2): 342-348. doi: 10.3969/j.issn.1672-7029.2017.02.020MENG Yi, HUANG Fang-lin. Discussion on research of vehicle lateral collision with RC columns[J]. Journal of Railway Science and Engineering, 2017, 14 (2): 342-348. (in Chinese). doi: 10.3969/j.issn.1672-7029.2017.02.020 [16] DO T V, PHAM T M, HAO H. Impact force profile and failure classification of reinforced concrete bridge columns against vehicle impact[J]. Engineering Structures, 2019, 183: 443-458. doi: 10.1016/j.engstruct.2019.01.040 [17] XU X, CAO R, EL-TAWIL S, et al. Loading definition and design of bridge piers impacted by medium-weight trucks[J]. Journal of Bridge Engineering, 2019, 24 (6): 04019042-1-13. [18] AUYEUNG S, ALIPOUR A. Evaluation of AASHTO suggested design values for reinforced concrete bridge piers under vehicle collisions[J]. Transportation Research Record, 2016 (2592): 1-8. [19] FAN Wei, XU Xin, ZHANG Zhi-yong, et al. Performance and sensitivity analysis of UHPFRC-strengthened bridge columns subjected to vehicle collisions[J]. Engineering Structures, 2018, 173: 251-268. doi: 10.1016/j.engstruct.2018.06.113 [20] BUTH C E, WILLIAMS W F, BRACKIN M S, et al. Analysis of large truck collisions with bridge piers: phase 1. Report of guidelines for designing bridge piers and abutments for vehicle collisions[R]. Austin: Texas Transportation Institute, 2010. [21] TEO W, YIN H, MAHARUN M N, et al. Research on HGV collisions with concrete bridge piers[J]. Applied Mechanics and Materials, 2014, 567: 648-653. doi: 10.4028/www.scientific.net/AMM.567.648 [22] 赵武超, 钱江. 重型车辆撞击桥墩的破坏模式及抗撞性能分析[J]. 防灾减灾工程学报, 2019, 39 (1): 67-74, 88. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201901010.htmZHAO Wu-chao, QIAN Jiang. Failure mode and impact performance of bridge piers subjected to heavy vehicle collision[J]. Journal of Disaster Prevention and Mitigation Engineering, 2019, 39 (1): 67-74, 88. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201901010.htm [23] MADURAPPERUMA M A K M, WIJEYEWICKREMA A C. Response of reinforced concrete columns impacted by tsunami dispersed 20' and 40' shipping containers[J]. Engineering Structures, 2013, 56: 1631-1644. doi: 10.1016/j.engstruct.2013.07.034 [24] CHEN L, EL-TAWIL S, XIAO Y. Reduced models for simulating collisions between trucks and bridge piers[J]. Journal of Bridge Engineering, 2016, 21 (6): 04016020-1-14. doi: 10.1061/(ASCE)BE.1943-5592.0000810 [25] SHA Yan-yan, HAO Hong. Laboratory tests and numerical simulations of barge impact on circular reinforced concrete piers[J]. Engineering Structures, 2013, 46: 593-605. doi: 10.1016/j.engstruct.2012.09.002 [26] SHARMA H, HURLEBAUS S, GARDONI P. Performance-based response evaluation of reinforced concrete columns subject to vehicle impact[J]. International Journal of Impact Engineering, 2012, 43: 52-62. doi: 10.1016/j.ijimpeng.2011.11.007 [27] MURRAY Y D. Users manual for LS-DYNA concrete material model 159[R]. McLean: U. S. Federal Highway Adminstration, 2007. [28] COWPER G R, SYMONDS P S. Strain-hardening and strain-rate effects in the impact loading of cantilever beams[R]. Providence: Brown University, 1957. [29] EL-TAWIL S, SEVERINO E, FONSECA P. Vehicle collision with bridge piers[J]. Journal of Bridge Engineering, 2005, 10 (3): 345-353. doi: 10.1061/(ASCE)1084-0702(2005)10:3(345) [30] YI N H, CHOI J H, KIM S J, et al. Collision capacity evaluation of RC columns by impact simulation and probabilistic evaluation[J]. Journal of Advanced Concrete Technology, 2015, 13: 67-81. doi: 10.3151/jact.13.67 [31] SHA Yan-yan, HAO Hong. Nonlinear finite element analysis of barge collision with a single bridge pier[J]. Engineering Structures, 2012, 41: 63-76. doi: 10.1016/j.engstruct.2012.03.026