留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

重型车辆撞击下桥墩碰撞力简化模型

赵武超 钱江 王娟

赵武超, 钱江, 王娟. 重型车辆撞击下桥墩碰撞力简化模型[J]. 交通运输工程学报, 2019, 19(4): 47-58. doi: 10.19818/j.cnki.1671-1637.2019.04.005
引用本文: 赵武超, 钱江, 王娟. 重型车辆撞击下桥墩碰撞力简化模型[J]. 交通运输工程学报, 2019, 19(4): 47-58. doi: 10.19818/j.cnki.1671-1637.2019.04.005
ZHAO Wu-chao, QIAN Jiang, WANG Juan. Simplified impact force model of pier under heavy vehicle collision[J]. Journal of Traffic and Transportation Engineering, 2019, 19(4): 47-58. doi: 10.19818/j.cnki.1671-1637.2019.04.005
Citation: ZHAO Wu-chao, QIAN Jiang, WANG Juan. Simplified impact force model of pier under heavy vehicle collision[J]. Journal of Traffic and Transportation Engineering, 2019, 19(4): 47-58. doi: 10.19818/j.cnki.1671-1637.2019.04.005

重型车辆撞击下桥墩碰撞力简化模型

doi: 10.19818/j.cnki.1671-1637.2019.04.005
基金项目: 

国家自然科学基金项目 51438010

详细信息
    作者简介:

    赵武超(1992-), 男, 河南周口人, 同济大学工学博士研究生, 从事工程结构冲击动力学研究

    钱江(1960-), 男, 浙江绍兴人, 同济大学教授, 工学博士

  • 中图分类号: U447

Simplified impact force model of pier under heavy vehicle collision

More Information
  • 摘要: 为了探究钢筋混凝土桥墩在重型车辆撞击下的安全性能, 建立了重型车辆-桥墩碰撞精细有限元模型, 研究了撞击速度、桥墩直径、上部结构边界条件和货物高度对桥墩破坏模式和内力分布的影响; 分析了不同工况下的车辆碰撞力特征, 并基于车辆初始动能耗散特点提出了碰撞力简化模型。分析结果表明: 重型车辆碰撞过程可以分为保险杠、发动机和货物撞击桥墩3个阶段, 碰撞力在前2个阶段主要集中在0.9 m高度处, 而在第3个阶段主要分布在2.7 m高度处; 在重型车辆撞击下, 不仅桥墩端部会出现严重损伤, 碰撞部位附近也可能发生严重的局部冲剪破坏; 由于忽略了碰撞荷载的动力效应和车辆与桥墩的耦合作用, 采用《公路桥涵设计通用规范》 (JTG D60—2015) 中建议的等效静力设计方法难以获得桥墩的实际撞击响应; 撞击速度对桥墩内力和碰撞力的影响最显著, 货物高度的不同会改变碰撞力的空间分布, 但不会影响桥墩的最大内力响应; 重型车辆的初始动能存在6.5 MJ的阈值, 当初始动能小于该阈值时, 车辆发动机和保险杠的碰撞作用对桥墩动力响应起主导作用, 反之, 后部货物的碰撞作用控制碰撞力峰值; 碰撞力简化模型和精细车辆模型预测所得桥墩最大内力响应的相对误差在8%以内, 且计算耗时从6~7 h缩短到4 min。

     

  • 图  1  重型车辆有限元模型

    Figure  1.  FE models of heavy vehicle

    图  2  桥墩几何尺寸和有限元模型(单位: mm)

    Figure  2.  Geometric dimensions and FE model of pier (unit: mm)

    图  3  碰撞过程中桥墩损伤状态

    Figure  3.  Damage states of pier during collision

    图  4  桥墩内力沿高度的分布

    Figure  4.  Internal force distributions of pier along height

    图  5  桥墩截面内力时程曲线

    Figure  5.  Time history curves of internal forces of pier cross sections

    图  6  不同撞击速度下桥墩碰撞力等高线

    Figure  6.  Impact force contours of pier with different impact velocities

    图  7  不同撞击速度下桥墩内力分布曲线

    Figure  7.  Internal force distribution curves of pier with different impact velocities

    图  8  不同桥墩直径下桥墩碰撞力等高线

    Figure  8.  Impact force contours of piers with different pier diameters

    图  9  不同桥墩直径下桥墩内力分布曲线

    Figure  9.  Internal force distribution curves of piers with different pier diameters

    图  10  不同上部结构边界条件下桥墩碰撞力等高线

    Figure  10.  Impact force contours of piers with different boundary conditions of superstructure

    图  11  不同上部结构边界条件下桥墩内力分布曲线

    Figure  11.  Internal force distribution curves of piers with different boundary conditions of superstructure

    图  12  不同货物高度下桥墩碰撞力等高线

    Figure  12.  Impact force contours of pier with different cargo heights

    图  13  不同货物高度下桥墩内力分布曲线

    Figure  13.  Internal force distribution curves of pier with different cargo heights

    图  14  静力和碰撞荷载下桥墩内力分布

    Figure  14.  Internal force distributions of pier under static and impact loads

    图  15  碰撞过程中系统能量曲线

    Figure  15.  System energy curves during collision

    图  16  各阶段桥墩碰撞力峰值

    Figure  16.  Peak impact force of pier at each stage

    图  17  不同部位的碰撞力时程

    Figure  17.  Time histories of impact forces at different positions

    图  18  碰撞力与车辆动能关系曲线

    Figure  18.  Relationship curves of impact force and kinetic energy of vehicle

    图  19  桥墩损伤状态对比

    Figure  19.  Comparison of damage states of pier

    图  20  不同模型计算所得桥墩内力分布曲线

    Figure  20.  Internal force distribution curves of pier calculated by different models

    表  1  桥墩材料力学参数

    Table  1.   Material mechanical parameters of pier

    材料 弹性模量/MPa 密度/ (kg·m-3) 泊松比 抗压强度/MPa 抗拉强度/MPa 屈服强度/MPa 失效主应变
    C40混凝土 3.25×104 2 380 0.2 26.8 2.4
    HRB400纵筋 2.00×105 7 850 0.3 400 0.12
    HRB335箍筋 2.00×105 7 850 0.3 335 0.12
    下载: 导出CSV
  • [1] 易仁彦, 周瑞峰, 黄茜. 近15年国内桥梁坍塌事故的原因和风险分析[J]. 交通科技, 2015 (5): 61-64. https://www.cnki.com.cn/Article/CJFDTOTAL-SKQB201505020.htm

    YI Ren-yan, ZHOU Rui-feng, HUANG Qian. Reason and risk of bridge collapse in recent 15 year[J]. Transportation Science and Technology, 2015 (5): 61-64. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SKQB201505020.htm
    [2] COOK W, BARR P J, HALLING M W. Bridge failure rate[J]. Journal of Performance of Constructed Facilities, 2015, 29 (3): 04014080-1-8. doi: 10.1061/(ASCE)CF.1943-5509.0000571
    [3] DO T V, PHAM T M, HAO H. Dynamic responses and failure modes of bridge columns under vehicle collision[J]. Engineering Structures, 2018, 156: 243-259. doi: 10.1016/j.engstruct.2017.11.053
    [4] ZHAO Wu-chao, QIAN Jiang, WANG Juan. Performance of bridge structures under heavy goods vehicle impact[J]. Computers and Concrete, 2018, 22 (6): 515-525.
    [5] XU Liang-jin, LU Xin-zheng, GUAN Hong, et al. Finite-element and simplified models for collision simulation between overheight trucks and bridge superstructures[J]. Journal of Bridge Engineering, 2013, 18 (11): 1140-1151. doi: 10.1061/(ASCE)BE.1943-5592.0000472
    [6] HU Bo, LI Guo-qiang. Maximum impact force of truck frontal crashing into antiram bollard systems[J]. Journal of Structural Engineering, 2016, 142 (12): 04016125-1-13.
    [7] 肖岩, 陈林, 肖果, 等. 防撞柱实车碰撞性能研究[J]. 振动与冲击, 2013, 32 (11): 1-6. doi: 10.3969/j.issn.1000-3835.2013.11.001

    XIAO Yan, CHEN Lin, XIAO Guo, et al. Tests for anti-ram bollards based on truck collision[J]. Journal of Vibration and Shock, 2013, 32 (11): 1-6. (in Chinese). doi: 10.3969/j.issn.1000-3835.2013.11.001
    [8] THILAKARATHNA H M I, THAMBIRATNAM D P, DHANASEKAR M, et al. Numerical simulation of axially loaded concrete columns under transverse impact and vulnerability assessment[J]. International Journal of Impact Engineering, 2010, 37 (11): 1100-1112. doi: 10.1016/j.ijimpeng.2010.06.003
    [9] STEEL K, SORENSEN A D. Reliability analysis of a circular bridge pier subject to intentional vehicular impact[C]//BEER M, AU S K, HALL J W. Second International Conference on Vulnerability and Risk Analysis and Management (ICVRAM) and the Sixth International Symposium on Uncertainty, Modeling, and Analysis (ISUMA). Reston: ASCE, 2014: 2702-2709.
    [10] 王娟, 钱江, 周德源. 城市桥梁下部结构抗重型车辆撞击的数值仿真分析[J]. 湖南大学学报(自然科学版), 2016, 43 (7): 88-95. doi: 10.3969/j.issn.1674-2974.2016.07.012

    WANG Juan, QIAN Jiang, ZHOU De-yuan. Numerical simulation of urban bridge substructures impacted by heavy vehicles[J]. Journal of Hunan University (Natural Sciences), 2016, 43 (7): 88-95. (in Chinese). doi: 10.3969/j.issn.1674-2974.2016.07.012
    [11] 王娟, 钱江, 周德源. 重型车辆撞击桥墩的碰撞力峰值参数分析[J]. 力学季刊, 2016, 37 (2): 337-344. https://www.cnki.com.cn/Article/CJFDTOTAL-SHLX201602023.htm

    WANG Juan, QIAN Jiang, ZHOU De-yuan. Parametric study on peak impact force for the bridge pier impacted by heavy vehicles[J]. Chinese Quarterly of Mechanics, 2016, 37 (2): 337-344. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SHLX201602023.htm
    [12] ABDELKARIM O I, ELGAWADY M A. Performance of hollow-core FRP-concrete-steel bridge columns subjected to vehicle collision[J]. Engineering Structures, 2016, 123: 517-531. doi: 10.1016/j.engstruct.2016.05.048
    [13] ABDELKARIM O I, ELGAWADY M A. Performance of bridge piers under vehicle collision[J]. Engineering Structures, 2017, 140: 337-352. doi: 10.1016/j.engstruct.2017.02.054
    [14] 崔堃鹏, 夏禾, 夏超逸, 等. 汽车撞击桥墩瞬态撞击力的等效静力计算[J]. 振动与冲击, 2014, 33 (4): 48-53, 69. doi: 10.3969/j.issn.1000-3835.2014.04.011

    CUI Kun-peng, XIA He, XIA Chao-yi, et al. Equivalent static force calculation methods for transient impact force of a vehicle in collision with piers[J]. Journal of Vibration and Shock, 2014, 33 (4): 48-53, 69. (in Chinese). doi: 10.3969/j.issn.1000-3835.2014.04.011
    [15] 孟一, 黄方林. 钢筋混凝土柱抗车辆侧向冲击研究[J]. 铁道科学与工程学报, 2017, 14 (2): 342-348. doi: 10.3969/j.issn.1672-7029.2017.02.020

    MENG Yi, HUANG Fang-lin. Discussion on research of vehicle lateral collision with RC columns[J]. Journal of Railway Science and Engineering, 2017, 14 (2): 342-348. (in Chinese). doi: 10.3969/j.issn.1672-7029.2017.02.020
    [16] DO T V, PHAM T M, HAO H. Impact force profile and failure classification of reinforced concrete bridge columns against vehicle impact[J]. Engineering Structures, 2019, 183: 443-458. doi: 10.1016/j.engstruct.2019.01.040
    [17] XU X, CAO R, EL-TAWIL S, et al. Loading definition and design of bridge piers impacted by medium-weight trucks[J]. Journal of Bridge Engineering, 2019, 24 (6): 04019042-1-13.
    [18] AUYEUNG S, ALIPOUR A. Evaluation of AASHTO suggested design values for reinforced concrete bridge piers under vehicle collisions[J]. Transportation Research Record, 2016 (2592): 1-8.
    [19] FAN Wei, XU Xin, ZHANG Zhi-yong, et al. Performance and sensitivity analysis of UHPFRC-strengthened bridge columns subjected to vehicle collisions[J]. Engineering Structures, 2018, 173: 251-268. doi: 10.1016/j.engstruct.2018.06.113
    [20] BUTH C E, WILLIAMS W F, BRACKIN M S, et al. Analysis of large truck collisions with bridge piers: phase 1. Report of guidelines for designing bridge piers and abutments for vehicle collisions[R]. Austin: Texas Transportation Institute, 2010.
    [21] TEO W, YIN H, MAHARUN M N, et al. Research on HGV collisions with concrete bridge piers[J]. Applied Mechanics and Materials, 2014, 567: 648-653. doi: 10.4028/www.scientific.net/AMM.567.648
    [22] 赵武超, 钱江. 重型车辆撞击桥墩的破坏模式及抗撞性能分析[J]. 防灾减灾工程学报, 2019, 39 (1): 67-74, 88. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201901010.htm

    ZHAO Wu-chao, QIAN Jiang. Failure mode and impact performance of bridge piers subjected to heavy vehicle collision[J]. Journal of Disaster Prevention and Mitigation Engineering, 2019, 39 (1): 67-74, 88. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201901010.htm
    [23] MADURAPPERUMA M A K M, WIJEYEWICKREMA A C. Response of reinforced concrete columns impacted by tsunami dispersed 20' and 40' shipping containers[J]. Engineering Structures, 2013, 56: 1631-1644. doi: 10.1016/j.engstruct.2013.07.034
    [24] CHEN L, EL-TAWIL S, XIAO Y. Reduced models for simulating collisions between trucks and bridge piers[J]. Journal of Bridge Engineering, 2016, 21 (6): 04016020-1-14. doi: 10.1061/(ASCE)BE.1943-5592.0000810
    [25] SHA Yan-yan, HAO Hong. Laboratory tests and numerical simulations of barge impact on circular reinforced concrete piers[J]. Engineering Structures, 2013, 46: 593-605. doi: 10.1016/j.engstruct.2012.09.002
    [26] SHARMA H, HURLEBAUS S, GARDONI P. Performance-based response evaluation of reinforced concrete columns subject to vehicle impact[J]. International Journal of Impact Engineering, 2012, 43: 52-62. doi: 10.1016/j.ijimpeng.2011.11.007
    [27] MURRAY Y D. Users manual for LS-DYNA concrete material model 159[R]. McLean: U. S. Federal Highway Adminstration, 2007.
    [28] COWPER G R, SYMONDS P S. Strain-hardening and strain-rate effects in the impact loading of cantilever beams[R]. Providence: Brown University, 1957.
    [29] EL-TAWIL S, SEVERINO E, FONSECA P. Vehicle collision with bridge piers[J]. Journal of Bridge Engineering, 2005, 10 (3): 345-353. doi: 10.1061/(ASCE)1084-0702(2005)10:3(345)
    [30] YI N H, CHOI J H, KIM S J, et al. Collision capacity evaluation of RC columns by impact simulation and probabilistic evaluation[J]. Journal of Advanced Concrete Technology, 2015, 13: 67-81. doi: 10.3151/jact.13.67
    [31] SHA Yan-yan, HAO Hong. Nonlinear finite element analysis of barge collision with a single bridge pier[J]. Engineering Structures, 2012, 41: 63-76. doi: 10.1016/j.engstruct.2012.03.026
  • 加载中
图(20) / 表(1)
计量
  • 文章访问数:  2097
  • HTML全文浏览量:  127
  • PDF下载量:  1344
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-01
  • 刊出日期:  2019-08-25

目录

    /

    返回文章
    返回