Influence of welding residual stress on fatigue strength for EMU aluminum alloy carbody
-
摘要: 采用热-弹塑性法和固有应变法计算了动车组铝合金车体对接接头的残余应力, 并进行了对比, 以验证采用固有应变法计算残余应力的合理性; 建立了车体的板壳有限元模型, 参照标准《铁路应用—铁路车辆车体的结构要求》 (EN 12663), 确定车体服役状态的疲劳载荷工况, 采用惯性释放法计算了车体有无残余应力的疲劳强度; 根据最大主应力原则, 将车体多轴应力转化为单轴应力, 得到焊缝和母材关注点的平均应力和应力幅值; 结合铝合金车体材料性能参数绘制了Goodman疲劳曲线, 计算了每个关注点的可靠性安全系数, 分析了残余应力对车体疲劳强度的影响。分析结果表明: 焊接残余应力对母材关注点影响不大, 其可靠性安全系数降幅小于5%;焊缝关注点的平均应力增加量可达25 MPa, 其可靠性安全系数降幅超过50%, 最大为54%, 使得车体容易疲劳失效; 残余应力对焊缝关注点最大主应力的方向有明显的改变。Abstract: The residual stresses of butt joint for EMU aluminum alloy carbody were calculated by using the thermal-elastic plastic method and inherent strain method, and the values were compared to verify the rationality of calculating the residual stress by inherent strain method. The shell finite element model of carbody was established, and with reference to the criteria, Railway Applications—Structural Requirements of Railway Vehicle Bodies (EN 12663), the fatigue load conditions of carbody service state were determined. The fatigue strengthes of carbody with and without residual stress were calculated by applying the inertial release method. According to the principle of maximum principal stress, the multi-axial stress of carbody was transformed into the uniaxial stress, and the average stresses and stress amplitudes of concerned points of the welds and the base metal were obtained. Combining with the performance parameters of aluminum alloy carbody material, the Goodman fatigue curve was drawn. The reliability safety coefficients of each concerned point were calculated and the influence of residual stress on the carbody fatigue strength was analyzed. Analysis result shows that the welding residual stress has little effect on the concerned points of base metal, and its reliability safety coefficient decreases by less than 5%. The average stress increasing amount of the concerned point of weld can be up to 25 MPa, and its reliability safety coefficient decreases by more than 50%, up to 54%, which makes the carbody prone to fatigue failure. The residual stress has a significant change in the direction of the maximum principal stress of the concerned point of weld.
-
表 1 焊接接头模型参数
Table 1. Model parameters of welded joint
接头形式 板厚/mm 焊道数目 坡口角度/ (°) 对接 3.5 1 70 表 2 悬挂设备质量
Table 2. Qualities of suspension equipments
设备 质量/t 辅助变流器 1.57 制动器控制箱 0.95 牵引变压器 6.45 客室空调 1.05 乘客及其他车内设备 12.00 表 3 车体材料的机械性能
Table 3. Mechanical properties of carbody materials
材料 强度极限/MPa 屈服极限/MPa 疲劳极限/MPa 母材 430 295 102 焊缝 247 128 39 表 4 车体疲劳载荷组合工况
Table 4. Combination conditions of carbody fatigue load
工况 纵向载荷 横向载荷 垂向载荷 1 0 0 F0 2 F1 F2 F0+F3 3 F1 -F2 F0+F3 4 -F1 F2 F0+F3 5 -F1 -F2 F0+F3 6 F1 F2 F0-F3 7 F1 -F2 F0-F3 8 -F1 F2 F0-F3 9 -F1 -F2 F0-F3 表 5 带残余应力的车体疲劳强度评估
Table 5. Fatigue strength evaluation of carbody with residual stresses
关注点 最大主应力/MPa 最小主应力/MPa 应力均值/MPa 应力幅值/MPa 最大主应力工况 最小主应力工况 可靠性安全系数(R=99.9%) 1 32.87 -30.25 1.31 31.56 2 9 2.15 2 25.01 -13.71 5.65 19.36 5 7 3.60 3 91.30 66.44 78.87 12.43 4 7 4.50 4 109.16 79.64 94.40 14.76 4 7 3.54 5 89.71 68.15 78.93 10.78 2 9 1.11 6 89.02 80.52 84.77 4.25 4 7 1.11 7 73.64 52.64 63.14 10.50 2 9 2.66 8 52.65 39.52 46.08 6.56 4 7 2.40 9 42.04 32.90 37.47 4.57 4 7 3.66 -
[1] 马思群, 袁永文, 冯良波, 等. 焊接速度对铝合金多道焊焊接残余应力影响研究[J]. 铁道学报, 2014, 36 (1): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201401005.htmMA Si-qun, YUAN Yong-wen, FENG Liang-bo, et al. Research on effect of welding speed on aluminium alloy multi-pass welding residual stress[J]. Journal of the China Railway Society, 2014, 36 (1): 16-21. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201401005.htm [2] 瞿伟廉, 何杰, 陈波. 对接焊缝残余应力对疲劳裂纹扩展的影响[J]. 武汉理工大学学报, 2009, 31 (2): 116-119. doi: 10.3963/j.issn.1671-4431.2009.02.0030QU Wei-lian, HE Jie, CHEN Bo. Influences of welding residual stresses on fatigue clack growth of butt weld plate[J]. Journal of Wuhan University of Technology, 2009, 31 (2): 116-119. (in Chinese). doi: 10.3963/j.issn.1671-4431.2009.02.0030 [3] 张沛心, 李良碧. 残余应力对水下耐压结构典型焊接接头疲劳强度的影响[J]. 中国舰船研究, 2015, 10 (1): 51-57, 67. doi: 10.3969/j.issn.1673-3185.2015.01.008ZHANG Pei-xin, LI Liang-bi. Influences of residual stress on the fatigue strength of the typical welded joint of the underwater pressure structure[J]. Chinese Journal of Ship Research, 2015, 10 (1): 51-57, 67. (in Chinese). doi: 10.3969/j.issn.1673-3185.2015.01.008 [4] 王若林, 高巍, 叶肖伟, 等. 焊接结构疲劳破坏的若干问题[J]. 武汉大学学报(工学版), 2013, 46 (2): 194-198. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201302013.htmWANG Ruo-lin, GAO Wei, YE Xiao-wei, et al. Some issues of fatigue failure of welded structures[J]. Engineering Journal of Wuhan University, 2013, 46 (2): 194-198. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201302013.htm [5] 吕涛, 赵海燕, 史耀武. 低碳钢焊缝金属强度组配对焊接残余应力分布的影响规律[J]. 中国机械工程, 2000, 11 (11): 1280-1283. doi: 10.3321/j.issn:1004-132X.2000.11.024LYU Tao, ZHAO Hai-yan, SHI Yao-wu. Influence of strength mis-matching on the residual stress distribution of welded joints[J]. China Mechanical Engineering, 2000, 11 (11): 1280-1283. (in Chinese). doi: 10.3321/j.issn:1004-132X.2000.11.024 [6] 周晶, 常保华, 张骅, 等. 采用固有应变法预测铝合金焊接变形[J]. 焊接技术, 2010, 39 (6): 6-10. doi: 10.3969/j.issn.1002-025X.2010.06.002ZHOU Jing, CHANG Bao-hua, ZHANG Hua, et al. Study on the prediction of welding distortion of aluminium alloy based on inherent strain method[J]. Welding Technology, 2010, 39 (6): 6-10. (in Chinese). doi: 10.3969/j.issn.1002-025X.2010.06.002 [7] LU Yao-hui, LU Chuan, ZHANG De-wen, et al. Numerical computation methods of welding deformation and their application in bogie frame for high-speed trains[J]. Journal of Manufacturing Processes, 2019, 38: 204-213. doi: 10.1016/j.jmapro.2019.01.013 [8] 刘良宝, 孙剑飞, 陈五一, 等. 7075T651铝合金板材内部初始残余应力分布研究[J]. 中国机械工程, 2016, 27 (4): 537-543. doi: 10.3969/j.issn.1004-132X.2016.04.020LIU Liang-bao, SUN Jian-fei, CHEN Wu-yi, et al. Study on distribution of initial residual stress in 7075T651 aluminium alloy plate[J]. China Mechanical Engineering, 2016, 27 (4): 537-543. (in Chinese). doi: 10.3969/j.issn.1004-132X.2016.04.020 [9] 邵光学, 柯杨, 岑升波. 疲劳加载下A7N01铝合金焊接残余应力演变研究[J]. 电焊机, 2017, 47 (10): 71-75. https://www.cnki.com.cn/Article/CJFDTOTAL-DHJI201710017.htmSHAO Guang-xue, KE Yang, CEN Sheng-bo. Residual stress evolution of welding joint of A7N01 aluminum alloy under fatigue load[J]. Electric Welding Machine, 2017, 47 (10): 71-75. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DHJI201710017.htm [10] 王秋成, 柯映林. 航空高强度铝合金残余应力的抑制与消除[J]. 航空材料学报, 2002, 22 (3): 59-62. doi: 10.3969/j.issn.1005-5053.2002.03.015WANG Qiu-cheng, KE Ying-lin. Control and relief of residual in high-strength aluminum alloy parts for aerospace industry[J]. Journal of Aeronautical Materials, 2002, 22 (3): 59-62. (in Chinese). doi: 10.3969/j.issn.1005-5053.2002.03.015 [11] 王生武, 温爱玲, 邴世君, 等. 滚压强化的残余应力的数值仿真及工艺分析[J]. 计算力学学报, 2008, 25 (增): 113-118. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG2008S1026.htmWANG Sheng-wu, WEN Ai-ling, BING Shi-jun, et al. FE simulation of residual stresses by surface rolling and analysis of rolling process[J]. Chinese Journal of Computational Mechanics, 2008, 25 (S): 113-118. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG2008S1026.htm [12] 陈禹锡, 高玉魁. Ti2AlNb金属间化合物喷丸强化残余应力模拟分析与疲劳寿命预测[J]. 表面技术, 2019, 48 (6): 167-172, 188. https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201906021.htmCHEN Yu-xi, GAO Yu-kui. Simulation of the residual stress and fatigue prediction of Ti2AlNb intermetallic compound under shot peening[J]. Surface Technology, 2019, 48 (6): 167-172, 188. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201906021.htm [13] 张正伟, 张昭, 张洪武. 焊接残余应力对2024铝合金薄板疲劳寿命的影响[J]. 焊接学报, 2014, 35 (10): 29-32, 36. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB201410009.htmZHANG Zheng-wei, ZHANG Zhao, ZHANG Hong-wu. Influence of welding residual stresses on fatigue life of Al 2024 plate[J]. Transactions of the China Welding Institution, 2014, 35 (10): 29-32, 36. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB201410009.htm [14] 丁叁叁, 李强, 苟国庆. 残余应力对高速列车A7N01铝合金焊接接头疲劳行为的影响[J]. 焊接学报, 2016, 37 (9): 23-28. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB201609006.htmDING San-san, LI Qiang, GOU Guo-qing. Effect of residual stress on fatigue behavior of welded joint of A7N01 aluminum alloy for high-speed trcion[J]. Transactions of the China Welding Institution, 2016, 37 (9): 23-28. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB201609006.htm [15] 苟国庆, 于金朋, 张立民, 等. 铝合金车体结构焊接残余应力研究[J]. 电焊机, 2011, 41 (11): 35-38. doi: 10.3969/j.issn.1001-2303.2011.11.007GOU Guo-qing, YU Jin-peng, ZHANG Li-min, et al. Research of welding residual stress about aluminum alloy[J]. Electric Welding Machine, 2011, 41 (11): 35-38. (in Chinese). doi: 10.3969/j.issn.1001-2303.2011.11.007 [16] 周昊, 刘英芳, 刘刚, 等. 考虑残余应力的焊接结构多轴疲劳准则[J]. 焊接学报, 2017, 38 (11): 41-46. doi: 10.12073/j.hjxb.20160114002ZHOU Hao, LIU Ying-fang, LIU Gang, et al. Multiaxial fatigue criteria of welded structures considering the residual stress[J]. Transactions of the China Welding Institution, 2017, 38 (11): 41-46. (in Chinese). doi: 10.12073/j.hjxb.20160114002 [17] 卢耀辉. 铁道客车转向架焊接构架疲劳可靠性研究[D]. 成都: 西南交通大学, 2011.LU Yao-hui. Study on fatigue reliability of welded bogie frame for railway vehicle[D]. Chengdu: Southwest Jiaotong University, 2011. (in Chinese). [18] 卢耀辉, 冯振, 陈天利, 等. 气动载荷影响下的高速列车车体疲劳强度评估方法[J]. 交通运输工程学报, 2014, 14 (6): 44-50. doi: 10.3969/j.issn.1671-1637.2014.06.006LU Yao-hui, FENG Zhen, CHEN Tian-li, et al. Evaluation method of fatigue strength for carbody of high-speed train under influence of aerodynamic loads[J]. Journal of Traffic and Transportation Engineering, 2014, 14 (6): 44-50. (in Chinese). doi: 10.3969/j.issn.1671-1637.2014.06.006 [19] 卢耀辉, 冯振, 曾京, 等. 高速列车车体动应力分析方法及寿命预测研究[J]. 铁道学报, 2016, 38 (9): 31-37. doi: 10.3969/j.issn.1001-8360.2016.09.005LU Yao-hui, FENG Zhen, ZENG Jing, et al. Research on dynamic stress analysis methods and prediction of fatigue life for carbody of high speed train[J]. Journal of the China Railway Society, 2016, 38 (9): 31-37. (in Chinese). doi: 10.3969/j.issn.1001-8360.2016.09.005 [20] LU Yao-hui, DANG Lin-yuan, ZHANG Xing, et al. Analysis of the dynamic response and fatigue reliability of a full-scale carbody of a high-speed train[J]. Journal of Rail and Rapid Transit, 2018, 232 (7): 2006-2023. doi: 10.1177/0954409718757295 [21] LU Yao-hui, BI Wei, ZHANG Xing, et al. Calculation method of dynamic loads spectrum and effects on fatigue damage of a full-scale carbody for high-speed trains[J]. Vehicle System Dynamics, 2019, 3: 1-20. [22] 卢耀辉, 向鹏霖, 曾京, 等. 铁道客车焊接构架疲劳强度评估方法[J]. 北京交通大学学报, 2016, 40 (6): 83-88. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201606014.htmLU Yao-hui, XIANG Peng-lin, ZENG Jing, et al. Evaluation method of fatigue strength for welding bogie frame on railway vehicle[J]. Journal of Beijing Jiaotong University, 2016, 40 (6): 83-88. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201606014.htm [23] LU Yao-hui, ZHENG He-yan, ZENG Jing, et al. Fatigue life reliability evaluation in a high-speed train bogie frame using accelerated life and numerical test[J]. Reliability Engineering and System Safety, 2019, 188: 221-232. [24] 闫德俊. 高速列车底架用铝合金焊接接头疲劳裂纹扩展特性[D]. 哈尔滨: 哈尔滨工业大学, 2011.YAN De-jun. Characteristics of fatigue crack propagation in welded joint of aluminum alloy used in vehicle chasis of high speed train[D]. Harbin: Harbin Institute of Technology, 2011. (in Chinese). [25] 徐琳. 角焊缝角变形数值预测方法研究[D]. 武汉: 武汉理工大学, 2007.XU Lin. Study on numerical prediction method for fillet weld's angular distortion[D]. Wuhan: Wuhan University of Technology, 2007. (in Chinese). [26] 付建科, 卢泽民, 雷小平, 等. 多层焊对接接头焊接残余应力有限元分析[J]. 热加工工艺, 2010, 39 (23): 147-149, 152. https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201023048.htmFU Jian-ke, LU Ze-min, LEI Xiao-ping, et al. Numerical analysis on residual stress in butt joint by multi-layer welding[J]. Hot Working Technology, 2010, 39 (23): 147-149, 152. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201023048.htm [27] TERASAKI T, FUKIKAWA T, KITAMURA T, et al. Welding deformation produced by two-pass welding[J]. Welding International, 2009, 23 (11): 830-838. [28] DENG D, MURAKAWA H. Prediction of welding distortion and residual stress in a thin plate butt-welded joint[J]. Computational Materials Science, 2008, 43 (2): 353-365. [29] 侯志刚. 薄板结构焊接变形的预测与控制[D]. 武汉: 华中科技大学, 2005.HOU Zhi-gang. Prediction and control of welding deformation of sheet structures[D]. Wuhan: Huazhong University of Science and Technology, 2005. (in Chinese). [30] 曾志. 复杂铝合金结构焊接应力与变形行为研究[D]. 天津: 天津大学, 2009.ZENG Zhi. Study on welding stress and deformation behavior of complicated aluminum alloy structure[D]. Tianjin: Tianjin University, 2009. (in Chinese).