留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

焊接残余应力对动车组铝合金车体疲劳强度的影响

卢耀辉 张德文 赵智堂 刘俊杰 卢川

卢耀辉, 张德文, 赵智堂, 刘俊杰, 卢川. 焊接残余应力对动车组铝合金车体疲劳强度的影响[J]. 交通运输工程学报, 2019, 19(4): 94-103. doi: 10.19818/j.cnki.1671-1637.2019.04.009
引用本文: 卢耀辉, 张德文, 赵智堂, 刘俊杰, 卢川. 焊接残余应力对动车组铝合金车体疲劳强度的影响[J]. 交通运输工程学报, 2019, 19(4): 94-103. doi: 10.19818/j.cnki.1671-1637.2019.04.009
LU Yao-hui, ZHANG De-wen, ZHAO Zhi-tang, LIU Jun-jie, LU Chuan. Influence of welding residual stress on fatigue strength for EMU aluminum alloy carbody[J]. Journal of Traffic and Transportation Engineering, 2019, 19(4): 94-103. doi: 10.19818/j.cnki.1671-1637.2019.04.009
Citation: LU Yao-hui, ZHANG De-wen, ZHAO Zhi-tang, LIU Jun-jie, LU Chuan. Influence of welding residual stress on fatigue strength for EMU aluminum alloy carbody[J]. Journal of Traffic and Transportation Engineering, 2019, 19(4): 94-103. doi: 10.19818/j.cnki.1671-1637.2019.04.009

焊接残余应力对动车组铝合金车体疲劳强度的影响

doi: 10.19818/j.cnki.1671-1637.2019.04.009
基金项目: 

国家自然科学基金项目 51275428

四川省科技计划项目 2018HH0072

详细信息
    作者简介:

    卢耀辉(1973-), 男, 甘肃民勤人, 西南交通大学教授, 工学博士, 从事车辆结构振动疲劳与焊接疲劳断裂研究

  • 中图分类号: U271.12

Influence of welding residual stress on fatigue strength for EMU aluminum alloy carbody

More Information
  • 摘要: 采用热-弹塑性法和固有应变法计算了动车组铝合金车体对接接头的残余应力, 并进行了对比, 以验证采用固有应变法计算残余应力的合理性; 建立了车体的板壳有限元模型, 参照标准《铁路应用—铁路车辆车体的结构要求》 (EN 12663), 确定车体服役状态的疲劳载荷工况, 采用惯性释放法计算了车体有无残余应力的疲劳强度; 根据最大主应力原则, 将车体多轴应力转化为单轴应力, 得到焊缝和母材关注点的平均应力和应力幅值; 结合铝合金车体材料性能参数绘制了Goodman疲劳曲线, 计算了每个关注点的可靠性安全系数, 分析了残余应力对车体疲劳强度的影响。分析结果表明: 焊接残余应力对母材关注点影响不大, 其可靠性安全系数降幅小于5%;焊缝关注点的平均应力增加量可达25 MPa, 其可靠性安全系数降幅超过50%, 最大为54%, 使得车体容易疲劳失效; 残余应力对焊缝关注点最大主应力的方向有明显的改变。

     

  • 图  1  材料参数曲线

    Figure  1.  Curves of material parameters

    图  2  接头模型和边界条件

    Figure  2.  Joint model and boundary condition

    图  3  纵向残余应力分布

    Figure  3.  Distribution of longitudinal residual stress

    图  4  横向残余应力分布

    Figure  4.  Distribution of lateral residual stress

    图  5  纵向固有应变分布

    Figure  5.  Distribution of longitudinal inherent strain

    图  6  横向固有应变分布

    Figure  6.  Distribution of lateral inherent strain

    图  7  关注路径纵向残余应力

    Figure  7.  Longitudinal residual stresses of concerned path

    图  8  关注路径横向残余应力

    Figure  8.  Lateral residual stresses of concerned path

    图  9  动车组铝合金车体模型

    Figure  9.  Model of EMU aluminum alloy carbody

    图  10  车体应力分布

    Figure  10.  Distribution of carbody stress

    图  11  车体疲劳关注点

    Figure  11.  Concerned points of carbody

    图  12  母材Goodman曲线

    Figure  12.  Goodman curve of base metal

    图  13  焊缝Goodman曲线

    Figure  13.  Goodman curve of weld

    图  14  关注点7主应力方向

    Figure  14.  Principal stress direction of concerned point 7

    图  15  可靠性安全系数对比

    Figure  15.  Comparison of reliability safety coefficients

    表  1  焊接接头模型参数

    Table  1.   Model parameters of welded joint

    接头形式 板厚/mm 焊道数目 坡口角度/ (°)
    对接 3.5 1 70
    下载: 导出CSV

    表  2  悬挂设备质量

    Table  2.   Qualities of suspension equipments

    设备 质量/t
    辅助变流器 1.57
    制动器控制箱 0.95
    牵引变压器 6.45
    客室空调 1.05
    乘客及其他车内设备 12.00
    下载: 导出CSV

    表  3  车体材料的机械性能

    Table  3.   Mechanical properties of carbody materials

    材料 强度极限/MPa 屈服极限/MPa 疲劳极限/MPa
    母材 430 295 102
    焊缝 247 128 39
    下载: 导出CSV

    表  4  车体疲劳载荷组合工况

    Table  4.   Combination conditions of carbody fatigue load

    工况 纵向载荷 横向载荷 垂向载荷
    1 0 0 F0
    2 F1 F2 F0+F3
    3 F1 -F2 F0+F3
    4 -F1 F2 F0+F3
    5 -F1 -F2 F0+F3
    6 F1 F2 F0-F3
    7 F1 -F2 F0-F3
    8 -F1 F2 F0-F3
    9 -F1 -F2 F0-F3
    下载: 导出CSV

    表  5  带残余应力的车体疲劳强度评估

    Table  5.   Fatigue strength evaluation of carbody with residual stresses

    关注点 最大主应力/MPa 最小主应力/MPa 应力均值/MPa 应力幅值/MPa 最大主应力工况 最小主应力工况 可靠性安全系数(R=99.9%)
    1 32.87 -30.25 1.31 31.56 2 9 2.15
    2 25.01 -13.71 5.65 19.36 5 7 3.60
    3 91.30 66.44 78.87 12.43 4 7 4.50
    4 109.16 79.64 94.40 14.76 4 7 3.54
    5 89.71 68.15 78.93 10.78 2 9 1.11
    6 89.02 80.52 84.77 4.25 4 7 1.11
    7 73.64 52.64 63.14 10.50 2 9 2.66
    8 52.65 39.52 46.08 6.56 4 7 2.40
    9 42.04 32.90 37.47 4.57 4 7 3.66
    下载: 导出CSV
  • [1] 马思群, 袁永文, 冯良波, 等. 焊接速度对铝合金多道焊焊接残余应力影响研究[J]. 铁道学报, 2014, 36 (1): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201401005.htm

    MA Si-qun, YUAN Yong-wen, FENG Liang-bo, et al. Research on effect of welding speed on aluminium alloy multi-pass welding residual stress[J]. Journal of the China Railway Society, 2014, 36 (1): 16-21. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201401005.htm
    [2] 瞿伟廉, 何杰, 陈波. 对接焊缝残余应力对疲劳裂纹扩展的影响[J]. 武汉理工大学学报, 2009, 31 (2): 116-119. doi: 10.3963/j.issn.1671-4431.2009.02.0030

    QU Wei-lian, HE Jie, CHEN Bo. Influences of welding residual stresses on fatigue clack growth of butt weld plate[J]. Journal of Wuhan University of Technology, 2009, 31 (2): 116-119. (in Chinese). doi: 10.3963/j.issn.1671-4431.2009.02.0030
    [3] 张沛心, 李良碧. 残余应力对水下耐压结构典型焊接接头疲劳强度的影响[J]. 中国舰船研究, 2015, 10 (1): 51-57, 67. doi: 10.3969/j.issn.1673-3185.2015.01.008

    ZHANG Pei-xin, LI Liang-bi. Influences of residual stress on the fatigue strength of the typical welded joint of the underwater pressure structure[J]. Chinese Journal of Ship Research, 2015, 10 (1): 51-57, 67. (in Chinese). doi: 10.3969/j.issn.1673-3185.2015.01.008
    [4] 王若林, 高巍, 叶肖伟, 等. 焊接结构疲劳破坏的若干问题[J]. 武汉大学学报(工学版), 2013, 46 (2): 194-198. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201302013.htm

    WANG Ruo-lin, GAO Wei, YE Xiao-wei, et al. Some issues of fatigue failure of welded structures[J]. Engineering Journal of Wuhan University, 2013, 46 (2): 194-198. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201302013.htm
    [5] 吕涛, 赵海燕, 史耀武. 低碳钢焊缝金属强度组配对焊接残余应力分布的影响规律[J]. 中国机械工程, 2000, 11 (11): 1280-1283. doi: 10.3321/j.issn:1004-132X.2000.11.024

    LYU Tao, ZHAO Hai-yan, SHI Yao-wu. Influence of strength mis-matching on the residual stress distribution of welded joints[J]. China Mechanical Engineering, 2000, 11 (11): 1280-1283. (in Chinese). doi: 10.3321/j.issn:1004-132X.2000.11.024
    [6] 周晶, 常保华, 张骅, 等. 采用固有应变法预测铝合金焊接变形[J]. 焊接技术, 2010, 39 (6): 6-10. doi: 10.3969/j.issn.1002-025X.2010.06.002

    ZHOU Jing, CHANG Bao-hua, ZHANG Hua, et al. Study on the prediction of welding distortion of aluminium alloy based on inherent strain method[J]. Welding Technology, 2010, 39 (6): 6-10. (in Chinese). doi: 10.3969/j.issn.1002-025X.2010.06.002
    [7] LU Yao-hui, LU Chuan, ZHANG De-wen, et al. Numerical computation methods of welding deformation and their application in bogie frame for high-speed trains[J]. Journal of Manufacturing Processes, 2019, 38: 204-213. doi: 10.1016/j.jmapro.2019.01.013
    [8] 刘良宝, 孙剑飞, 陈五一, 等. 7075T651铝合金板材内部初始残余应力分布研究[J]. 中国机械工程, 2016, 27 (4): 537-543. doi: 10.3969/j.issn.1004-132X.2016.04.020

    LIU Liang-bao, SUN Jian-fei, CHEN Wu-yi, et al. Study on distribution of initial residual stress in 7075T651 aluminium alloy plate[J]. China Mechanical Engineering, 2016, 27 (4): 537-543. (in Chinese). doi: 10.3969/j.issn.1004-132X.2016.04.020
    [9] 邵光学, 柯杨, 岑升波. 疲劳加载下A7N01铝合金焊接残余应力演变研究[J]. 电焊机, 2017, 47 (10): 71-75. https://www.cnki.com.cn/Article/CJFDTOTAL-DHJI201710017.htm

    SHAO Guang-xue, KE Yang, CEN Sheng-bo. Residual stress evolution of welding joint of A7N01 aluminum alloy under fatigue load[J]. Electric Welding Machine, 2017, 47 (10): 71-75. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DHJI201710017.htm
    [10] 王秋成, 柯映林. 航空高强度铝合金残余应力的抑制与消除[J]. 航空材料学报, 2002, 22 (3): 59-62. doi: 10.3969/j.issn.1005-5053.2002.03.015

    WANG Qiu-cheng, KE Ying-lin. Control and relief of residual in high-strength aluminum alloy parts for aerospace industry[J]. Journal of Aeronautical Materials, 2002, 22 (3): 59-62. (in Chinese). doi: 10.3969/j.issn.1005-5053.2002.03.015
    [11] 王生武, 温爱玲, 邴世君, 等. 滚压强化的残余应力的数值仿真及工艺分析[J]. 计算力学学报, 2008, 25 (增): 113-118. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG2008S1026.htm

    WANG Sheng-wu, WEN Ai-ling, BING Shi-jun, et al. FE simulation of residual stresses by surface rolling and analysis of rolling process[J]. Chinese Journal of Computational Mechanics, 2008, 25 (S): 113-118. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG2008S1026.htm
    [12] 陈禹锡, 高玉魁. Ti2AlNb金属间化合物喷丸强化残余应力模拟分析与疲劳寿命预测[J]. 表面技术, 2019, 48 (6): 167-172, 188. https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201906021.htm

    CHEN Yu-xi, GAO Yu-kui. Simulation of the residual stress and fatigue prediction of Ti2AlNb intermetallic compound under shot peening[J]. Surface Technology, 2019, 48 (6): 167-172, 188. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201906021.htm
    [13] 张正伟, 张昭, 张洪武. 焊接残余应力对2024铝合金薄板疲劳寿命的影响[J]. 焊接学报, 2014, 35 (10): 29-32, 36. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB201410009.htm

    ZHANG Zheng-wei, ZHANG Zhao, ZHANG Hong-wu. Influence of welding residual stresses on fatigue life of Al 2024 plate[J]. Transactions of the China Welding Institution, 2014, 35 (10): 29-32, 36. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB201410009.htm
    [14] 丁叁叁, 李强, 苟国庆. 残余应力对高速列车A7N01铝合金焊接接头疲劳行为的影响[J]. 焊接学报, 2016, 37 (9): 23-28. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB201609006.htm

    DING San-san, LI Qiang, GOU Guo-qing. Effect of residual stress on fatigue behavior of welded joint of A7N01 aluminum alloy for high-speed trcion[J]. Transactions of the China Welding Institution, 2016, 37 (9): 23-28. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB201609006.htm
    [15] 苟国庆, 于金朋, 张立民, 等. 铝合金车体结构焊接残余应力研究[J]. 电焊机, 2011, 41 (11): 35-38. doi: 10.3969/j.issn.1001-2303.2011.11.007

    GOU Guo-qing, YU Jin-peng, ZHANG Li-min, et al. Research of welding residual stress about aluminum alloy[J]. Electric Welding Machine, 2011, 41 (11): 35-38. (in Chinese). doi: 10.3969/j.issn.1001-2303.2011.11.007
    [16] 周昊, 刘英芳, 刘刚, 等. 考虑残余应力的焊接结构多轴疲劳准则[J]. 焊接学报, 2017, 38 (11): 41-46. doi: 10.12073/j.hjxb.20160114002

    ZHOU Hao, LIU Ying-fang, LIU Gang, et al. Multiaxial fatigue criteria of welded structures considering the residual stress[J]. Transactions of the China Welding Institution, 2017, 38 (11): 41-46. (in Chinese). doi: 10.12073/j.hjxb.20160114002
    [17] 卢耀辉. 铁道客车转向架焊接构架疲劳可靠性研究[D]. 成都: 西南交通大学, 2011.

    LU Yao-hui. Study on fatigue reliability of welded bogie frame for railway vehicle[D]. Chengdu: Southwest Jiaotong University, 2011. (in Chinese).
    [18] 卢耀辉, 冯振, 陈天利, 等. 气动载荷影响下的高速列车车体疲劳强度评估方法[J]. 交通运输工程学报, 2014, 14 (6): 44-50. doi: 10.3969/j.issn.1671-1637.2014.06.006

    LU Yao-hui, FENG Zhen, CHEN Tian-li, et al. Evaluation method of fatigue strength for carbody of high-speed train under influence of aerodynamic loads[J]. Journal of Traffic and Transportation Engineering, 2014, 14 (6): 44-50. (in Chinese). doi: 10.3969/j.issn.1671-1637.2014.06.006
    [19] 卢耀辉, 冯振, 曾京, 等. 高速列车车体动应力分析方法及寿命预测研究[J]. 铁道学报, 2016, 38 (9): 31-37. doi: 10.3969/j.issn.1001-8360.2016.09.005

    LU Yao-hui, FENG Zhen, ZENG Jing, et al. Research on dynamic stress analysis methods and prediction of fatigue life for carbody of high speed train[J]. Journal of the China Railway Society, 2016, 38 (9): 31-37. (in Chinese). doi: 10.3969/j.issn.1001-8360.2016.09.005
    [20] LU Yao-hui, DANG Lin-yuan, ZHANG Xing, et al. Analysis of the dynamic response and fatigue reliability of a full-scale carbody of a high-speed train[J]. Journal of Rail and Rapid Transit, 2018, 232 (7): 2006-2023. doi: 10.1177/0954409718757295
    [21] LU Yao-hui, BI Wei, ZHANG Xing, et al. Calculation method of dynamic loads spectrum and effects on fatigue damage of a full-scale carbody for high-speed trains[J]. Vehicle System Dynamics, 2019, 3: 1-20.
    [22] 卢耀辉, 向鹏霖, 曾京, 等. 铁道客车焊接构架疲劳强度评估方法[J]. 北京交通大学学报, 2016, 40 (6): 83-88. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201606014.htm

    LU Yao-hui, XIANG Peng-lin, ZENG Jing, et al. Evaluation method of fatigue strength for welding bogie frame on railway vehicle[J]. Journal of Beijing Jiaotong University, 2016, 40 (6): 83-88. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201606014.htm
    [23] LU Yao-hui, ZHENG He-yan, ZENG Jing, et al. Fatigue life reliability evaluation in a high-speed train bogie frame using accelerated life and numerical test[J]. Reliability Engineering and System Safety, 2019, 188: 221-232.
    [24] 闫德俊. 高速列车底架用铝合金焊接接头疲劳裂纹扩展特性[D]. 哈尔滨: 哈尔滨工业大学, 2011.

    YAN De-jun. Characteristics of fatigue crack propagation in welded joint of aluminum alloy used in vehicle chasis of high speed train[D]. Harbin: Harbin Institute of Technology, 2011. (in Chinese).
    [25] 徐琳. 角焊缝角变形数值预测方法研究[D]. 武汉: 武汉理工大学, 2007.

    XU Lin. Study on numerical prediction method for fillet weld's angular distortion[D]. Wuhan: Wuhan University of Technology, 2007. (in Chinese).
    [26] 付建科, 卢泽民, 雷小平, 等. 多层焊对接接头焊接残余应力有限元分析[J]. 热加工工艺, 2010, 39 (23): 147-149, 152. https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201023048.htm

    FU Jian-ke, LU Ze-min, LEI Xiao-ping, et al. Numerical analysis on residual stress in butt joint by multi-layer welding[J]. Hot Working Technology, 2010, 39 (23): 147-149, 152. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201023048.htm
    [27] TERASAKI T, FUKIKAWA T, KITAMURA T, et al. Welding deformation produced by two-pass welding[J]. Welding International, 2009, 23 (11): 830-838.
    [28] DENG D, MURAKAWA H. Prediction of welding distortion and residual stress in a thin plate butt-welded joint[J]. Computational Materials Science, 2008, 43 (2): 353-365.
    [29] 侯志刚. 薄板结构焊接变形的预测与控制[D]. 武汉: 华中科技大学, 2005.

    HOU Zhi-gang. Prediction and control of welding deformation of sheet structures[D]. Wuhan: Huazhong University of Science and Technology, 2005. (in Chinese).
    [30] 曾志. 复杂铝合金结构焊接应力与变形行为研究[D]. 天津: 天津大学, 2009.

    ZENG Zhi. Study on welding stress and deformation behavior of complicated aluminum alloy structure[D]. Tianjin: Tianjin University, 2009. (in Chinese).
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  1933
  • HTML全文浏览量:  203
  • PDF下载量:  1178
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-26
  • 刊出日期:  2019-08-25

目录

    /

    返回文章
    返回