留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

转向架橡胶件动态参数的高低温特性

谭富星 石怀龙 王玮 刘诗慧 刘洪涛

谭富星, 石怀龙, 王玮, 刘诗慧, 刘洪涛. 转向架橡胶件动态参数的高低温特性[J]. 交通运输工程学报, 2019, 19(4): 104-114. doi: 10.19818/j.cnki.1671-1637.2019.04.010
引用本文: 谭富星, 石怀龙, 王玮, 刘诗慧, 刘洪涛. 转向架橡胶件动态参数的高低温特性[J]. 交通运输工程学报, 2019, 19(4): 104-114. doi: 10.19818/j.cnki.1671-1637.2019.04.010
TAN Fu-xing, SHI Huai-long, WANG Wei, LIU Shi-hui, LIU Hong-tao. High and low temperature characteristics of rubber component dynamic parameters of a bogie[J]. Journal of Traffic and Transportation Engineering, 2019, 19(4): 104-114. doi: 10.19818/j.cnki.1671-1637.2019.04.010
Citation: TAN Fu-xing, SHI Huai-long, WANG Wei, LIU Shi-hui, LIU Hong-tao. High and low temperature characteristics of rubber component dynamic parameters of a bogie[J]. Journal of Traffic and Transportation Engineering, 2019, 19(4): 104-114. doi: 10.19818/j.cnki.1671-1637.2019.04.010

转向架橡胶件动态参数的高低温特性

doi: 10.19818/j.cnki.1671-1637.2019.04.010
基金项目: 

国家自然科学基金项目 51805451

国家自然科学基金项目 11790282

中央高校基本科研业务费专项资金项目 2682019CX43

详细信息
    作者简介:

    谭富星(1979-), 吉林长春人, 男, 中车长春轨道客车股份有限公司教授级高级工程师, 工学博士, 从事机车车辆系统试验测试技术研究

    通讯作者:

    石怀龙(1986-), 吉林公主岭人, 男, 西南交通大学助理研究员, 工学博士

  • 中图分类号: U270.3

High and low temperature characteristics of rubber component dynamic parameters of a bogie

More Information
  • 摘要: 针对高速列车转向架悬挂系统中的弹性橡胶件, 为掌握其非线性刚度和阻尼系数的频变、幅变和温变特性, 开展动态参数的高低温(-60℃~60℃) 特性试验, 阐述了橡胶件参数动态特性的试验方法, 对轴箱叠层橡胶弹簧和转臂定位橡胶节点进行轴向、径向的静态和动态测试, 根据载荷-挠度滞回曲线计算刚度和阻尼系数。试验结果表明: 常温23℃工况下, 橡胶件的刚度和阻尼系数仅表现出频变、幅变特性, 参数变化量却与环境温度强相关; 相比于常温23℃工况, -60℃极低温环境下的橡胶件刚度和阻尼系数均显著增大, 激振位移为0.50 mm时刚度增加1倍以上, 阻尼系数增加4~6倍, 并且激振频率越高两者增幅越显著; 60℃高温环境下, 相比23℃橡胶件刚度仅降低约5%, 阻尼系数仅降低约25%, 并且高温环境下橡胶件的频变和幅变非线性减弱; 低温引起车辆悬挂系统动态刚度和阻尼系数变化, 进而造成车辆动力学性能指标变化, 相比于常温, -40℃工况下运行安全性指标如脱轨系数增大约5%, 车体振动加速度显著增大约17%。

     

  • 图  1  转向架一系悬挂橡胶件

    Figure  1.  Rubber components in primary suspension of bogie

    图  2  弹性模量曲线

    Figure  2.  Curves of elastic modulus

    图  3  橡胶节点动态参数测试台

    Figure  3.  Dynamic parameter test bench for rubber joint

    图  4  轴向刚度试验现场

    Figure  4.  Testing site for axial stiffness

    图  5  轴箱叠层橡胶弹簧动态参数测试台

    1.基座; 2.承载台; 3.下方叠层弹簧; 4、5.横向加载连接; 6.上方叠层弹簧; 7.横向固定装置; 8.垂向加载连接

    Figure  5.  Dynamic parameter test bench for layer rubber spring mounted on axle box

    图  6  高低温环境试验箱

    Figure  6.  Test box with high and low temperature environments

    图  7  载荷-挠度滞回曲线

    Figure  7.  Load-deflection hysteresis curve

    图  8  橡胶件阻尼系数计算

    Figure  8.  Calculation of damping coefficient of rubber component

    图  9  静态刚度的温变特性曲线

    Figure  9.  Temperature-dependent characteristic curves of static stiffness

    图  10  动态刚度非线性特性

    Figure  10.  Nonlinear characteristics of dynamic stiffness

    图  11  阻尼系数的非线性特性

    Figure  11.  Nonlinear characteristics of damping coefficient

    图  12  径向刚度和阻尼系数的非线性特性

    Figure  12.  Nonlinear characteristics of radial stiffness and damping coefficient

    图  13  车辆动力学性能

    Figure  13.  Vehicle dynamics performances

    表  1  静态刚度的高低温特性

    Table  1.   High and low temperature characteristics of static stiffness

    方向 加载速度/ (mm·min-1) 23 ℃刚度/ (MN·m-1) -60 ℃刚度增长率/% 60 ℃刚度降低率/%
    轴向 0.5~10.0 3.8 15 1
    0.5~20.0 3.9 18 1
    2.0~10.0 3.2 11 1
    2.0~20.0 3.3 11 1
    径向 0.5~10.0 1.4 16 11
    0.5~20.0 1.5 16 10
    2.0~10.0 1.2 18 9
    2.0~20.0 1.2 19 8
    下载: 导出CSV

    表  2  轴向动态刚度的高低温特性

    Table  2.   High and low temperature characteristics of axial dynamic stiffness

    加载工况 23 ℃刚度/ (MN·m-1) -60 ℃刚度增长率/% 60 ℃刚度降低率/%
    幅值/mm 频率/Hz
    0.50 1.0 4.1 160 17
    0.50 2.0 4.1 193 17
    0.50 6.0 4.1 265 16
    0.50 12.0 4.1 313 22
    1.00 1.0 3.8 79 11
    1.00 2.0 3.9 94 12
    1.00 6.0 3.9 130 13
    1.00 12.0 3.7 163 16
    下载: 导出CSV

    表  3  径向动态刚度的高低温特性

    Table  3.   High and low temperature characteristics of radial dynamic stiffness

    加载工况 23 ℃刚度/ (MN·m-1) -60 ℃刚度增长率/% 60 ℃刚度降低率/%
    幅值/mm 频率/Hz
    0.50 1.0 1.6 209 13
    0.50 2.0 1.7 233 12
    0.50 6.0 1.7 268 14
    0.50 12.0 1.7 308 13
    1.00 1.0 1.5 127 12
    1.00 2.0 1.6 143 12
    1.00 6.0 1.6 175 13
    1.00 12.0 1.6 206 13
    下载: 导出CSV

    表  4  轴向动态阻尼系数的高低温特性

    Table  4.   High and low temperature characteristics of axial dynamic damping coefficient

    加载工况 23 ℃阻尼系数/ (kN·s·m-1) -60 ℃阻尼系数增长率/% 60 ℃阻尼系数降低率/%
    幅值/mm 频率/Hz
    0.5 1.0 96.0 542 71
    0.50 2.0 50.1 637 71
    0.50 6.0 17.2 841 67
    0.50 12.0 9.3 905 66
    1.00 1.0 71.5 330 60
    1.00 2.0 37.6 402 59
    1.00 6.0 13.7 529 58
    1.00 12.0 7.6 607 57
    下载: 导出CSV

    表  5  径向动态阻尼系数的高低温特性

    Table  5.   High and low temperature characteristics of radial dynamic damping coefficient

    加载工况 23 ℃阻尼系数/ (kN·s·m-1) -60 ℃阻尼系数增长率/% 60 ℃阻尼系数降低率/%
    幅值/mm 频率/Hz
    0.50 1.0 25.3 750 33
    0.50 2.0 13.6 810 32
    0.50 6.0 5.5 862 31
    0.50 12.0 3.5 820 37
    1.00 1.0 26.5 472 29
    1.00 2.0 14.4 513 29
    1.00 6.0 5.8 555 31
    1.00 12.0 3.4 591 29
    下载: 导出CSV

    表  6  动态刚度的高低温特性

    Table  6.   High and low temperature characteristics of dynamic stiffness

    加载工况 23 ℃刚度/ (MN·m-1) -60 ℃刚度增长率/% 60 ℃刚度降低率/%
    幅值/mm 频率/Hz
    0.50 1.0 19.6 71 5
    0.50 2.0 19.8 83 5
    0.50 6.0 20.1 104 5
    0.50 12.0 20.3 113 6
    1.00 1.0 18.3 28 4
    1.00 2.0 18.5 33 5
    1.00 6.0 18.7 40 5
    1.00 12.0 18.9 41 6
    下载: 导出CSV

    表  7  动态阻尼的高低温特性

    Table  7.   High and low temperature characteristics of dynamic damping

    加载工况 23 ℃阻尼系数/ (kN·s·m-1) -60 ℃阻尼系数增长率/% 60 ℃阻尼系数降低率/%
    幅值/mm 频率/Hz
    0.50 1.0 264.6 436 25
    0.50 2.0 139.8 487 25
    0.50 6.0 51.9 542 27
    0.50 12.0 25.9 568 25
    1.00 1.0 230.0 223 24
    1.00 2.0 120.4 263 24
    1.00 6.0 45.1 302 25
    1.00 12.0 22.3 315 26
    下载: 导出CSV
  • [1] KLOOW L. High-speed train operation in winter climate[R]. Stockholm: KTH Railway Group and Transrail, 2011.
    [2] BETTEZ M. Winter technologies for high speed rail[R]. Trondheim: Norwegian University of Science and Technology, 2011.
    [3] PAULUKUHN L, 吴新民. 俄罗斯高速列车Velaro RUS的低温技术方案及运营经验[J]. 国外铁道车辆, 2012, 49 (3): 16-19. doi: 10.3969/j.issn.1002-7610.2012.03.003

    PAULUKUHN L, WU Xin-min. The low temperatures technology concepts and operational experience in Russian high speed train Velaro RUS[J]. Foreign Rolling Stock, 2012, 49 (3): 16-19. (in Chinese). doi: 10.3969/j.issn.1002-7610.2012.03.003
    [4] WANG Jia-bin, ZHANG Jie, XIE Fei, et al. A study of snow accumulating on the bogie and the effects of deflectors on the de-icing performance in the bogie region of a high-speed train[J]. Cold Regions Science and Technology, 2018, 148: 121-130. doi: 10.1016/j.coldregions.2018.01.010
    [5] XIE F, ZHANG J, GAO G, et al. Study of snow accumulation on a high-speed train's bogies based on the discrete phase model[J]. Journal of Applied Fluid Mechanics, 2017, 10 (6): 1729-1745. doi: 10.29252/jafm.73.245.27410
    [6] SAITO M. Japanese railway safety and the technology of the day[J]. Japan Railway and Transport Review, 2002, 33: 4-13.
    [7] SEBESAN I, ZAHARIA N L, SPIROIU M A, et al. Rubber suspension, a solution of the future for railway vehicles[J]. Materiale Plastice, 2015, 52 (1): 93-96.
    [8] 韩庆利. 高寒高速动车组转向架耐低温防冰雪技术研究[J]. 铁道机车与动车, 2016 (12): 29-31, 46. https://www.cnki.com.cn/Article/CJFDTOTAL-LRJX201612008.htm

    HAN Qing-li. Research of low temperature resistant and ice and snow protective technology for high-speed EMU's bogie[J]. Railway Locomotive and Motor Car, 2016 (12): 29-31, 46. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LRJX201612008.htm
    [9] SHI Huai-long, WANG Jian-bin, WU Ping-bo, et al. Field measurements of the evolution of wheel wear and vehicle dynamics for high-speed trains[J]. Vehicle System Dynamics, 2018, 56 (8): 1187-1206. doi: 10.1080/00423114.2017.1406963
    [10] LI Guo-dong, LI Xiao-feng, SONG Chun-yuan. Influence of service environment on the wheel wear of high speed trains[C]//CM. Proceedings of 11th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems. Delft: CM, 2018: 536-542.
    [11] 彭立群, 林达文, 王叶青, 等. 低温对橡胶弹性元件传递率和固有频率的影响[J]. 铁道机车车辆, 2018, 38 (6): 55-60. doi: 10.3969/j.issn.1008-7842.2018.06.12

    PENG Li-qun, LIN Da-wen, WANG Ye-qing, et al. Influence of low temperature on the transmission rate and natural frequency of rubber elastic components[J]. Railway Locomotiveand Car, 2018, 38 (6): 55-60. (in Chinese). doi: 10.3969/j.issn.1008-7842.2018.06.12
    [12] 卢成壮, 李静媛, 周邦阳, 等. 金属橡胶的刚度特性和阻尼试验研究[J]. 振动与冲击, 2017, 36 (8): 203-208. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201708032.htm

    LU Cheng-zhuang, LI Jing-yuan, ZHOU bang-yang, et al. An experimental study on stiffness characteristics and damping of metal rubber[J]. Journal of Vibration and Shock, 2017, 36 (8): 203-208. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201708032.htm
    [13] 石怀龙, 宋烨, 邬平波, 等. 高速动车组转向架悬挂刚度特性[J]. 吉林大学学报(工学版), 2015, 45 (3): 776-782. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201503014.htm

    SHI Huai-long, SONG Ye, WU Ping-bo, et al. Calculation and testing of suspension stiffness of a bogie of high speed EMU[J]. Journal of Jilin University (Engineering and Technology Edition), 2015, 45 (3): 776-782. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201503014.htm
    [14] 石怀龙, 邬平波, 罗仁. 客车转向架回转阻力矩特性[J]. 交通运输工程学报, 2013, 13 (4): 45-50. doi: 10.3969/j.issn.1671-1637.2013.04.007

    SHI Huai-long, WU Ping-bo, LUO Ren. Bogie rotation resistance torque characteristics of passenger car[J]. Journal of Traffic and Transportation Engineering, 2013, 13 (4): 45-50. (in Chinese). doi: 10.3969/j.issn.1671-1637.2013.04.007
    [15] 罗仁, 李然, 胡俊波, 等. 考虑随机参数的高速列车动力学分析[J]. 机械工程学报, 2015, 51 (24): 90-96. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201524012.htm

    LUO Ren, LI Ran, HU Jun-bo, et al. Dynamic analysis of high-speed train with stochastic parameters[J]. Journal of Mechanical Engineering, 2015, 51 (24): 90-96. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201524012.htm
    [16] 罗仁, 胡俊波, 王一平. 考虑随机因素的高速列车动力学模拟方法及应用[J]. 铁道车辆, 2016, 54 (10): 1-6. doi: 10.3969/j.issn.1002-7602.2016.10.001

    LUO Ren, HU Jun-bo, WANG Yi-ping. Dynamics simulation method and the application on high speed trains with consideration of random factors[J]. Rolling Stock, 2016, 54 (10): 1-6. (in Chinese). doi: 10.3969/j.issn.1002-7602.2016.10.001
    [17] LUO Ren, SHI Huai-long, TENG Wan-xiu, et al. Prediction of wheel profile wear and vehicle dynamics evolution considering stochastic parameters for high-speed train[J]. Wear, 2017, 392/393: 126-138. doi: 10.1016/j.wear.2017.09.019
    [18] 李密, 邬平波, 王玮, 等. 轴箱转臂定位节点温变特性对车辆动力学性能的影响[J]. 噪声与振动控制, 2018, 38 (4): 111-115. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK201804023.htm

    LI Mi, WU Ping-bo, WANG Wei, et al. Influence of temperature varying characteristic of axle-box tumbler rubber nodes on vehicle's dynamics performance[J]. Noise and Vibration Control, 2018, 38 (4): 111-115. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK201804023.htm
    [19] 张隶新, 魏来, 王勇. 变刚度转臂定位节点对车辆动力学性能的影响[J]. 铁道车辆, 2016, 54 (12): 1-4. doi: 10.3969/j.issn.1002-7602.2016.12.001

    ZHANG Li-xin, WEI Lai, WANG Yong. Effect of the positioning nodal point of rotary arm with variable stiffness on the dynamics performance of vehicles[J]. Rolling Stock, 2016, 54 (12): 1-4. (in Chinese). doi: 10.3969/j.issn.1002-7602.2016.12.001
    [20] WEI Kai, WANG Feng, WANG Ping, et al. Effect of temperature- and frequency-dependent dynamic properties of rail pads on high-speed vehicle-track coupled vibrations[J]. Vehicle System Dynamics, 2017, 55 (3): 251-370.
    [21] MA L, SHI L B, Guo J, et al. On the wear and damage characteristics of rail material under low temperature environment condition[J]. Wear, 2018, 394/395: 149-158. doi: 10.1016/j.wear.2017.10.011
    [22] 孙琳, 林化强, 林鹏, 等. 北方高寒地区轨道车辆橡胶材料的力学特性分析[J]. 材料开发与应用, 2016, 31 (6): 88-92. https://www.cnki.com.cn/Article/CJFDTOTAL-CLKY201606020.htm

    SUN Lin, LIN Hua-qiang, LIN Peng, et al. Mechanical properties analysis of rubber materials for rail vehicles in the North China[J]. Development and Application of Materials, 2016, 31 (6): 88-92. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CLKY201606020.htm
    [23] 王付胜, 高新文, 曹江勇, 等. 轨道车辆用耐低温橡胶减振元件的研究[J]. 铁道车辆, 2012, 50 (11): 22-24, 33. https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL201211006.htm

    WANG Fu-sheng, GAO Xin-wen, CAO Jiang-yong, et al. Research on low temperature resistant rubber damping elements for rail vehicles[J]. Rolling Stock, 2012, 50 (11): 22-24, 33. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL201211006.htm
    [24] 金耿日, 管欣, 詹军, 等. 底盘橡胶部件低温特性的试验研究[J]. 汽车工程, 2017, 39 (3): 364-368, 350. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201703019.htm

    KIM Kyongil, GUAN Hsin, ZHAN Jun, et al. An experimental study on the low temperature characteristics of chassis rubber components[J]. Automotive Engineering, 2017, 39 (3): 364-368, 350. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201703019.htm
    [25] 大道休, 刘艳芳. 转向架橡胶件的变化与其运行性能的关系[J]. 国外机车车辆工艺, 2003 (4): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-GWJQ200304007.htm

    DA Dao-xiu, LIU Yan-Fang. The relationship between the change of the rubber parts of the bogie and its running performance[J]. Foreign Locomotive and Rolling Stock Technology, 2003 (4): 25-29. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GWJQ200304007.htm
    [26] 宋春元, 罗仁. 低温条件悬挂参数变化对动力学性能的影响研究[C]//中国智能交通协会. 第八届中国智能交通年会论文. 合肥: 电子工业出版社, 2013: 309-314. SONG Chun-yuan, Luo Ren. Study on the effects of parameters on the dynamic performance of the low temperature suspension[C]//ITS China. Proceedings of 8th Chinese Technological Transportation. Hefei: Publishing House of Electronics Industry, 2013: 309-314. (in Chinese).
    [27] 陈清明, 周令. 低温对转向架结构性能的影响[J]. 电力机车技术, 2002, 25 (增): 10-11. https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI2002S1003.htm

    CHEN Qing-ming, ZHOU Ling. Influence on structure and performance of bogie in low temperature[J]. Technology for Electric Locomotives, 2002, 25 (S): 10-11. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI2002S1003.htm
    [28] 丁智平, 穆龙海, 卜继玲, 等. 橡胶弹性元件低温刚度预测[J]. 振动与冲击, 2017, 36 (14): 66-70. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201714010.htm

    DING Zhi-ping, MU Long-hai, BU Ji-ling, et al. Stiffness prediction of rubber springs at lower temperature[J]. Journal of Vibration and Shock, 2017, 36 (14): 66-70. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201714010.htm
    [29] LUO Ren, SHI Huai-long, GUO Jin-ying, et al. A nonlinear rubber spring model for the dynamics simulation of a high-speed train[J]. Vehicle System Dynamics, 2019, DOI: 10.1080/00423114.2019.1624788.
    [30] SHI Huai-long, WU Ping-bo. A nonlinear rubber spring model containing fractional derivatives for use in railroad vehicle dynamic analysis[J]. Journal of Rail and Rapid Transit, 2016, 230 (7): 1745-1759.
  • 加载中
图(13) / 表(7)
计量
  • 文章访问数:  1935
  • HTML全文浏览量:  114
  • PDF下载量:  1326
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-08
  • 刊出日期:  2019-08-25

目录

    /

    返回文章
    返回