留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轨道随机不平顺下磁浮车辆非线性动力学特性

陈琛 徐俊起 荣立军 潘洪亮 高定刚

陈琛, 徐俊起, 荣立军, 潘洪亮, 高定刚. 轨道随机不平顺下磁浮车辆非线性动力学特性[J]. 交通运输工程学报, 2019, 19(4): 115-124. doi: 10.19818/j.cnki.1671-1637.2019.04.011
引用本文: 陈琛, 徐俊起, 荣立军, 潘洪亮, 高定刚. 轨道随机不平顺下磁浮车辆非线性动力学特性[J]. 交通运输工程学报, 2019, 19(4): 115-124. doi: 10.19818/j.cnki.1671-1637.2019.04.011
CHEN Chen, XU Jun-qi, RONG Li-jun, PAN Hong-liang, GAO Ding-gang. Nonlinear dynamics characteristics of maglev vehicle under track random irregularities[J]. Journal of Traffic and Transportation Engineering, 2019, 19(4): 115-124. doi: 10.19818/j.cnki.1671-1637.2019.04.011
Citation: CHEN Chen, XU Jun-qi, RONG Li-jun, PAN Hong-liang, GAO Ding-gang. Nonlinear dynamics characteristics of maglev vehicle under track random irregularities[J]. Journal of Traffic and Transportation Engineering, 2019, 19(4): 115-124. doi: 10.19818/j.cnki.1671-1637.2019.04.011

轨道随机不平顺下磁浮车辆非线性动力学特性

doi: 10.19818/j.cnki.1671-1637.2019.04.011
基金项目: 

国家重点研发计划项目 2016YFB1200601

详细信息
    作者简介:

    陈琛(1993-), 男, 甘肃兰州人, 同济大学工程师, 从事磁浮车辆悬浮控制与耦合振动研究

    通讯作者:

    徐俊起(1977-), 男, 山东潍坊人, 同济大学高级工程师, 西南交通大学工学博士研究生

  • 中图分类号: U266.4

Nonlinear dynamics characteristics of maglev vehicle under track random irregularities

More Information
  • 摘要: 基于柔性轨道研究了随机不平顺下磁浮车辆的动力学特性, 在将轨道受力分解为分段链式结构的基础上, 提出了一种磁浮车辆垂向悬浮稳定性分析方法, 定义了不同悬浮力作用于各自悬浮点时柔性轨道的振动固有频率和模态矩阵; 建立了轨道分段链式结构的离散形式和轨道结构的运动方程, 采用虚拟激励法将轨道不平顺产生的随机激励转化为系统输入激励, 并将轨道随机高低不平顺作为振动激励源进行车轨振动控制; 在不同反馈控制参数下采用电压反馈双环PID控制器数值仿真车辆的悬浮状态, 并分析了轨道随机不平顺激励下反馈控制参数对磁浮系统稳定性的影响。研究结果表明: 当磁浮车辆速度为50~80 km·h-1, 位移反馈参数、速度反馈参数和电流反馈参数分别为140 000、50、500时, 车辆可以从起始间隙16 mm快速定位到平衡位置间隙9 mm, 在2.2 s时即可稳定悬浮, 系统的超调量和稳态误差分别为1.50和0.13 mm, 且系统振动频率趋近于0;当位移反馈参数、速度反馈参数和电流反馈参数分别为15 000、50、400时, 磁浮车辆在轨道随机不平顺作用下的悬浮稳定性变差, 系统在9 s左右逐渐趋于稳定, 但仍旧在平衡位置上下浮动, 且系统振动频率和振动幅值分别为7 Hz和0.5 mm; 当磁浮车辆的速度超出50~80 km·h-1时, 第1组反馈控制参数不再适用, 磁浮系统在1.7 s左右发散, 车辆失稳, 表明在不同车辆速度和反馈控制参数的作用下, 轨道随机不平顺能显著影响磁浮车辆的悬浮稳定性。

     

  • 图  1  磁浮车辆结构

    Figure  1.  Structure of maglev vehicle

    图  2  轨道分段链式结构

    Figure  2.  Segmented chain structure of track

    图  3  轨道随机不平顺激励状态

    Figure  3.  Track random irregularity excitation state

    图  4  不同反馈控制参数下悬浮间隙曲线

    Figure  4.  Suspension gap curves under different feedback control parameters

    图  5  不同反馈控制参数下控制电流曲线

    Figure  5.  Control current curves under different feedback control parameters

    图  6  不恰当反馈控制参数下悬浮间隙发散曲线

    Figure  6.  Suspension gap divergence curve under unsuitable feedback control parameters

    图  7  不恰当反馈控制参数下控制电流发散曲线

    Figure  7.  Control current divergent curve under unsuitable feedback control parameters

    图  8  车轨耦合系统

    Figure  8.  Vehicle track coupling system

    图  9  信号传递系统

    Figure  9.  Signal transmission system

    图  10  悬浮间隙响应试验结果

    Figure  10.  Test results of suspension gap response

    图  11  控制电流响应试验结果

    Figure  11.  Test results of control current response

    表  1  车轨耦合系统物理参数

    Table  1.   Physical parameters of vehicle track coupling system

    物理参数 参数值
    车体质量/t 25
    悬浮架质量/kg 750
    每延米轨道质量/kg 8 937.755
    线圈匝数 700
    目标气隙/m 0.009
    电磁铁面积/m2 0.024
    真空磁导率/ (H·m-1) 4π×10-7
    线圈电阻/Ω 1.2
    稳定电流/A 19.5
    漏磁率 0
    下载: 导出CSV
  • [1] 郑浩哲. 随机路面行驶车辆振动响应的快速虚拟激励算法[J]. 汽车工程, 1993, 15 (5): 268-275. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC199305002.htm

    ZHENG Hao-zhe. A fast computing method for random vibrations of road vehicles[J]. Automotive Engineering, 1993, 15 (5): 268-275. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC199305002.htm
    [2] 赵又群, 郭孔辉. 具有随机道路输入的人-车-路闭环操纵系统的响应分析与操纵安全性评价[J]. 汽车工程, 1997, 19 (5): 273-278. doi: 10.3321/j.issn:1000-680X.1997.05.001

    ZHAO You-qun, GUO Kong-hui. Response analysis and handing safety evaluation for driver/vehicle/road closed-loop maneuvering system with random road input[J]. Automotive Engineering, 1997, 19 (5): 273-278. (in Chinese). doi: 10.3321/j.issn:1000-680X.1997.05.001
    [3] 李强, 周济. 重型越野车的非平稳随机激励系统优化设计方法[J]. 机械强度, 1998, 20 (1): 45-52. https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD801.010.htm

    LI Qiang, ZHOU Ji. The dynamic optimization design method of nonstationary stochastic excitation heavy truck[J]. Journal of Mechanical Strength, 1998, 20 (1): 45-52. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD801.010.htm
    [4] 李杰, 陈建兵. 随机结构动力可靠性分析的概率密度演化方法[J]. 力学学报, 2004, 17 (2): 121-125. doi: 10.3969/j.issn.0258-1825.2004.02.001

    LI Jie, CHEN Jian-bing. Probability density evolution method for dynamic reliability analysis of stochastic structures[J]. Journal of Vibration Engineering, 2004, 17 (2): 121-125. (in Chinese). doi: 10.3969/j.issn.0258-1825.2004.02.001
    [5] 陈建兵, 李杰. 随机荷载作用下随机结构线性反应的概率密度演化分析[J]. 固体力学学报, 2004, 25 (1): 119-124. doi: 10.3969/j.issn.0254-7805.2004.01.025

    CHEN Jian-bing, LI Jie. Probability density evolution of linear stochastic structural response[J]. Acta Mechanica Solida Sinica, 2004, 25 (1): 119-124. (in Chinese). doi: 10.3969/j.issn.0254-7805.2004.01.025
    [6] 李杰, 陈建兵. 随机动力系统中的概率密度演化方程及其研究进展[J]. 力学进展, 2010, 40 (2): 170-188. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201002005.htm

    LI Jie, CHEN Jian-bing. Advances in the research on probability density evolution equations of stochastic dynamical systems[J]. Advances in Mechanics, 2010, 40 (2): 170-188. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201002005.htm
    [7] 林家浩, 钟万勰, 张文首. 结构非平稳随机响应方差矩阵的直接精细积分计算[J]. 振动工程学报, 1999, 12 (1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC901.000.htm

    LIN Jia-hao, ZHONG Wan-xie, ZHANG Wen-shou. Precise integration of the variance matrix of structural nonstationary random responses[J]. Journal of Vibration Engineering, 1999, 12 (1): 1-8. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC901.000.htm
    [8] 吕峰. 车辆与结构相互作用随机动力分析[D]. 大连: 大连理工大学, 2008.

    LYU Feng. Stochastic analysis for dynamic interaction of vehicles and structures[D]. Dalian: Dalian University of Technology, 2008. (in Chinese).
    [9] 张志超. 车桥系统耦合振动和地震响应的随机分析[D]. 大连: 大连理工大学, 2010.

    ZHANG Zhi-chao. Stochastic analysis for the coupling vibration and seismic responses of train-bridge systems[D]. Dalian: Dalian University of Technology, 2010. (in Chinese).
    [10] ZHANG Z C, LIN J H, ZHANG Y H, et al. Non-stationary random vibration analysis of three-dimensional train-bridge systems[J]. Vehicle System Dynamics, 2010, 48 (4): 457-480. doi: 10.1080/00423110902866926
    [11] ZHANG Z C, ZHANG Y H, LIN J H, e al. Random vibration of a train traversing a bridge subjected to traveling seismic waves[J]. Engineering Structures, 2011, 33 (12): 3546-3558. doi: 10.1016/j.engstruct.2011.07.018
    [12] ZHANG Y W, LIN J H, ZHAO Y, et al. Symplectic random vibration analysis of a vehicle moving on an infinitely long periodic track[J]. Journal of Sound and Vibration, 2010, 329 (21): 4440-4454. doi: 10.1016/j.jsv.2010.05.004
    [13] 赵春发, 翟婉明, 王开云. 磁悬浮车辆随机振动响应分析及其平稳性研究[J]. 中国机械工程, 2002, 13 (16): 1402-1407. doi: 10.3321/j.issn:1004-132X.2002.16.016

    ZHAO Chun-fa, ZHAI Wan-ming, WANG Kai-yun. A study on maglev vehicle vertical random vibration and ride quality[J]. China Mechanical Engineering, 2002, 13 (16): 1402-1407. (in Chinese). doi: 10.3321/j.issn:1004-132X.2002.16.016
    [14] MACE B R, MANCONI E. Modelling wave propagation in two-dimensional structures using finite element analysis[J]. Journal of Sound and Vibration, 2008, 318 (4/5): 884-902.
    [15] 张玲玲. 磁浮列车悬浮系统的Hopf分岔及滑模控制研究[D]. 长沙: 湖南大学, 2010.

    ZHANG Ling-ling. Research on Hopf bifurcation and sliding mode control for suspension system of maglev train[D]. Changsha: Hunan University, 2010. (in Chinese).
    [16] XU Jun-qi, CHEN Chen, GAO Ding-gang, et al. Nonlinear dynamic analysis on maglev train system with flexible guideway and double time-delay feedback control[J]. Journal of Vibroengineering, 2017, 19 (8): 6346-6362. doi: 10.21595/jve.2017.18970
    [17] 吕峰, 林家浩, 张亚辉. 车辆-轨道系统垂向随机振动的辛方法分析[J]. 力学学报, 2008, 40 (3): 381-387. doi: 10.3321/j.issn:0459-1879.2008.03.012

    LYU Feng, LIN Jia-hao, ZHANG Ya-hui. Random vibration analysis of vehicle-track coupling systems using symplectic method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40 (3): 381-387. (in Chinese). doi: 10.3321/j.issn:0459-1879.2008.03.012
    [18] LYUF, KENNEDYD, WILLIAMSF W, et al. Symplectic analysis of vertical random vibration for coupled vehicle-track systems[J]. Journal of Sound and Vibration, 2008, 317(1/2): 236-249. (in Chinese)
    [19] MAZILU T, DUMITRIU M, TUDORACHE C. On the dynamics of interaction between a moving mass and an infinite one-dimensional elastic structure at the stability limit[J]. Journal of Sound and Vibration, 2011, 330 (15): 3729-3743. doi: 10.1016/j.jsv.2011.02.026
    [20] 张有为. 车辆-轨道耦合系统高效随机振动分析及优化[D]. 大连: 大连理工大学, 2013.

    ZHANG You-wei. Efficient random vibration analysis and optimization for coupled vehicle-track systems[D]. Dalian: Dalian University of Technology, 2013. (in Chinese).
    [21] LI Jin-hui, LI Jie, ZHOU Dan-feng, et al. The active control of maglev stationary self-excited vibration with a virtual energy harvester[J]. IEEE Transactions on Industrial Electronics, 2015, 62 (5): 2942-2951. doi: 10.1109/TIE.2014.2364788
    [22] 张丽萍, 郭立新. 基于逆虚拟激励法的随机路面谱的识别方法[J]. 东北大学学报(自然科学版), 2012, 33 (2): 258-261. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201202027.htm

    ZHANG Li-ping, GUO Li-xin. Identification of random road spectrum based on inverse pseudo-excitation method[J]. Journal of Northeast University (Natural Science), 2012, 33 (2): 258-261. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201202027.htm
    [23] 王辉, 钟晓波, 沈钢. 一种新型磁悬浮线路设计方案及悬浮控制方法[J]. 同济大学学报(自然科学版), 2013, 41 (7): 1112-1118. doi: 10.3969/j.issn.0253-374x.2013.07.026

    WANG Hui, ZHONG Xiao-bo, SHEN Gang. A new maglev line system design and control strategy[J]. Journal of Tongji University (Natural Science), 2013, 41 (7): 1112-1118. (in Chinese). doi: 10.3969/j.issn.0253-374x.2013.07.026
    [24] TSUNASHIMA H, ABE M. Static and dynamic performance of permanent magnet suspension for maglev transport vehicle[J]. Vehicle System Dynamics, 1998, 29 (2): 83-111. doi: 10.1080/00423119808969368
    [25] CHEN Chen, XU Jun-qi, JI Wen, et. al. Sliding mode robust adaptive control of maglev vehicle's nonlinear suspension system based on flexible track: design and experiment[J]. IEEE Access, 2019, 7: 41874-41884. doi: 10.1109/ACCESS.2019.2906245
    [26] SUN You-gang, XU Jun-qi, QIANG Hai-yan, et. al. Adaptive sliding mode control of maglev system based on RBF neural network minimum parameter learning method[J]. Measurement, 2019, 141: 217-226.
    [27] XU Jun-qi, CHEN Chen, SUN You-gang, et al. Multi point suspension cooperative modeling and control of low speed maglev vehicle[C]//IEEE. 2018 Chinese Automation Congress (CAC 2018). New York: IEEE, 2018: 3317-3322.
    [28] 张青霞, 段忠东, JANKOWSKI L. 基于虚拟变形法的车-桥耦合系统移动质量识别[J]. 力学学报, 2011, 43 (3): 598-610. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201103021.htm

    ZHANG Qing-xia, DUAN Zhong-dong, JANKOWSKI L. Moving mass identification of vehicle-bridge coupled system based on virtual distortion method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43 (3): 598-610. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201103021.htm
    [29] 李小珍, 朱艳, 强士中. 车桥系统空间非平稳随机分析[J]. 铁道学报, 2012, 34 (6): 88-94. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201206021.htm

    LI Xiao-zhen, ZHU Yan, QIANG Shi-zhong. Spatial train-bridge coupling system non-stationary stochastic responses analysis[J]. Journal of the China Railway Society, 2012, 34 (6): 88-94. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201206021.htm
    [30] 孙作玉, 王晖. 结构非平稳随机响应方差数值计算方法[J]. 振动工程学报, 2009, 22 (3): 325-328. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC200903019.htm

    SUN Zuo-yu, WANG Hui. Calculation method of the variance matrix of structural non-stationary random responses[J]. Journal of Vibration Engineering, 2009, 22 (3): 325-328. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC200903019.htm
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  2033
  • HTML全文浏览量:  187
  • PDF下载量:  1270
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-03
  • 刊出日期:  2019-08-25

目录

    /

    返回文章
    返回