留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

y+值对MIRA模型气动参数计算精度的影响

刘海涛

刘海涛. y+值对MIRA模型气动参数计算精度的影响[J]. 交通运输工程学报, 2019, 19(4): 125-136. doi: 10.19818/j.cnki.1671-1637.2019.04.012
引用本文: 刘海涛. y+值对MIRA模型气动参数计算精度的影响[J]. 交通运输工程学报, 2019, 19(4): 125-136. doi: 10.19818/j.cnki.1671-1637.2019.04.012
LIU Hai-tao. Influence of y+ value on calculation accuracy of aerodynamic parameters of MIRA model[J]. Journal of Traffic and Transportation Engineering, 2019, 19(4): 125-136. doi: 10.19818/j.cnki.1671-1637.2019.04.012
Citation: LIU Hai-tao. Influence of y+ value on calculation accuracy of aerodynamic parameters of MIRA model[J]. Journal of Traffic and Transportation Engineering, 2019, 19(4): 125-136. doi: 10.19818/j.cnki.1671-1637.2019.04.012

y+值对MIRA模型气动参数计算精度的影响

doi: 10.19818/j.cnki.1671-1637.2019.04.012
基金项目: 

国家自然科学基金项目 51765017

江西省青年科学基金项目 20161BAB216136

江西省教育厅科学技术研究项目 GJJ150497

详细信息
    作者简介:

    刘海涛(1986-), 男, 湖北宜昌人, 华东交通大学讲师, 工学博士, 从事车辆振动噪声控制及空气动力学研究

  • 中图分类号: U462

Influence of y+ value on calculation accuracy of aerodynamic parameters of MIRA model

More Information
  • 摘要: 为研究量纲为1的参数y+值对车辆气动参数计算精度的影响, 以阶梯背MIRA模型为基础, 在保证模型网格数量与质量相近的情况下调整近壁网格尺寸, 构建不同y+值的流场仿真模型; 考虑到不同的湍流模型对车辆外流场仿真的y+值具有不同的适用范围, 选取SST κ-ω和LES两种常用的湍流模型对阶梯背MIRA模型外流场进行稳态和非稳态仿真分析; 将气动参数仿真结果与试验结果进行对比分析, 得出合适的y+值取值范围; 结合仿真速度云图和车身表面受力曲线分析了边界层首层网格厚度对仿真精度的影响; 建立了方背MIRA模型在2种湍流模型下的外流场仿真模型, 进行不同流速下气动参数的计算, 从而对y+值取值范围进行验证。研究结果表明: 针对车辆外流场数值仿真, 采用SST κ-ω模型时对应的合适平均y+值取值范围为20~50, 而采用LES模型时对应的合适平均y+值取值范围为5~10;当边界层首层近壁网格厚度过大时, 数值仿真无法准确捕捉边界层中速度梯度的变化, 造成边界层流场流动信息丢失, 而当边界层首层近壁网格厚度过小时, 边界层网格会严重畸变, 2种情况下气动参数计算误差都超过5%, 从而影响车辆外流场数值仿真精度; 根据所获得的y+值取值范围, 方背MIRA模型计算的气动参数误差小于5%, 说明了2种湍流模型平均y+值取值范围的正确性。

     

  • 图  1  边界层结构

    Figure  1.  Structure of boundary layer

    图  2  阶梯背MIRA模型(单位: mm)

    Figure  2.  Step-back MIRA model (unit: mm)

    图  3  虚拟风洞几何模型

    Figure  3.  Geometric model of virtual wind tunnel

    图  4  外流场仿真网格模型

    Figure  4.  Simulation grid model of external flow field

    图  5  不同边界层首层近壁网格厚度的网格模型

    Figure  5.  Grid models with different thicknesses of first near-wall grid of boundary layers

    图  6  阻力系数曲线

    Figure  6.  Curves of drag coefficient

    图  7  阻力系数相对误差曲线

    Figure  7.  Relative error curves of drag coefficient

    图  8  SST κ-ω模型的车头附近流速分布

    Figure  8.  Flow velocity distributions around vehicle head of SST κ-ω model

    图  9  LES模型的车头附近流速分布

    Figure  9.  Flow velocity distributions around vehicle head of LES model

    图  10  SST κ-ω模型的整车外流场流速分布

    Figure  10.  Flow velocity distributions of vehicle external flow field of SST κ-ω model

    图  11  LES模型的整车外流场流速分布

    Figure  11.  Flow velocity distributions of vehicle external flow field of LES model

    图  12  车身表面压力曲线(对称截面)

    Figure  12.  Carbody surface pressure curves (symmetrical section)

    图  13  车身表面切应力曲线(对称截面)

    Figure  13.  Carbody surface shear stress curves (symmetrical section)

    图  14  方背MIRA模型

    Figure  14.  Square-back MIRA model

    表  1  SST κ-ω模型气动参数仿真结果

    Table  1.   Simulation results of aerodynamic parameters of SST κ-ω model

    首层网格厚度/mm 平均y+ 气动阻力/N 阻力系数
    压差阻力 摩擦阻力 总阻力
    0.05 2 32.03 3.86 35.89 0.303 7
    0.10 5 32.76 4.11 36.87 0.311 9
    0.30 9 32.89 4.28 37.17 0.314 5
    0.50 20 33.58 4.27 37.85 0.320 3
    1.00 30 33.24 4.48 37.72 0.319 1
    2.00 50 33.07 4.64 37.71 0.319 0
    5.00 300 30.51 4.49 35.01 0.296 2
    10.00 500 26.93 3.96 30.89 0.261 3
    15.00 700 27.03 3.72 30.75 0.260 2
    20.00 900 27.61 3.47 31.08 0.263 0
    40.00 1 500 29.87 3.28 33.15 0.280 5
    下载: 导出CSV

    表  2  LES模型气动参数仿真结果

    Table  2.   Simulation results of aerodynamic parameters of LES model

    首层网格厚度/mm 平均y+ 气动阻力/N 阻力系数
    压差阻力 摩擦阻力 总阻力
    0.05 2 32.92 1.98 34.90 0.295 2
    0.10 5 33.30 3.56 36.87 0.311 9
    0.30 9 33.93 4.31 38.24 0.323 5
    0.50 20 35.60 3.81 39.41 0.333 4
    1.00 30 36.77 3.95 40.72 0.344 4
    2.00 50 37.44 3.68 41.12 0.347 9
    5.00 300 38.86 3.62 42.48 0.359 4
    10.00 500 35.84 3.75 39.59 0.334 9
    15.00 700 35.29 3.72 39.01 0.330 0
    20.00 900 31.17 3.82 34.99 0.296 0
    40.00 1 500 29.87 3.88 33.75 0.285 5
    下载: 导出CSV

    表  3  SST κ-ω模型仿真结果(方背MIRA)

    Table  3.   Simulation result of SST κ-ω model (square-back MIRA)

    流速/ (m·s-1) 总阻力/N 阻力系数仿真结果 阻力系数试验结果 误差/%
    24.88 24.88 0.389 7 0.380 9 2.30
    30.10 30.10 0.387 4 0.381 0 1.70
    34.77 34.77 0.393 0 0.383 3 2.53
    下载: 导出CSV

    表  4  LES模型仿真结果(方背MIRA)

    Table  4.   Simulation result of LES model (square-back MIRA)

    流速/ (m·s-1) 总阻力/N 阻力系数仿真结果 阻力系数试验结果 误差/%
    24.88 28.99 0.363 9 0.380 9 4.46
    30.10 45.48 0.390 2 0.381 0 2.41
    34.77 61.84 0.397 5 0.383 3 3.71
    下载: 导出CSV
  • [1] NANA C, MARX D, PRAX C, et al. Hybrid aeroacoustic computation of a low Mach number non-isothermal shear layer[J]. Computers and Fluids, 2014, 93 (8): 30-40.
    [2] KANG S O, JUN S O, PARK H I, et al. Actively translating a rear diffuser device for the aerodynamic drag reduction of a passenger car[J]. International Journal of Automotive Technology, 2012, 13 (4): 583-592. doi: 10.1007/s12239-012-0056-x
    [3] SEBBEN S, STERKEN L, WOLKEN T. Characterization of the rear wake of a SUV with and without extensions[J]. Journal of Automobile Engineering, 2017, 231 (9): 1294-1302. doi: 10.1177/0954407016678016
    [4] SHAO Nan, YAO Guo-feng, ZHANG Chang, et al. A new method to optimize the wake flow of a vehicle: the leading edge rotating cylinder[J]. Mathematical Problems in Engineering, 2017, 2017 (3): 1-16.
    [5] BARSOTTI D L, DIVO E A, BOETCHER S K S. Optimizing jets for active control of wake refinement for ground vehicles[J]. Journal of Fluids Engineering, 2015, 137 (12): 1-10.
    [6] GUILMINEAU E, CHIKHAOUI O, DENG G, et al. Cross wind effects on a simplified car model by a DES approach[J]. Computers and Fluids, 2013, 78 (1): 29-40.
    [7] 范伟军, 陈涛, 石少亮. 侧风下的汽车非光滑表面后视镜气动降噪研究[J]. 噪声与振动控制, 2017, 37 (5): 103-108, 131. doi: 10.3969/j.issn.1006-1355.2017.05.022

    FAN Wei-jun, CHEN Tao, SHI Shao-liang. Research on the aerodynamic noise reduction of car rearview mirrors with non-smooth surface under crosswind condition[J]. Noise and Vibration Control, 2017, 37 (5): 103-108, 131. (in chinese). doi: 10.3969/j.issn.1006-1355.2017.05.022
    [8] YU Meng-ge, ZHANG Ji-ye, ZHANG Wei-hua. Multi-objective optimization design method of the high-speed train head[J]. Journal of Zhejiang University—Science A (Applied Physics and Engineering), 2013, 14 (9): 631-641. doi: 10.1631/jzus.A1300109
    [9] ZHANG Liang, ZHANG Ji-ye, LI Tian, et al. Multi-objective aerodynamic optimization design of high-speed train head shape[J]. Journal of Zhejiang University—Science A (Applied Physics and Engineering), 2017, 18 (11): 841-854. doi: 10.1631/jzus.A1600764
    [10] NIU Ji-qiang, ZHOU Dan, LIU Tang-hong, et al. Numerical simulation of aerodynamic performance of a couple multiple units high-speed train[J]. Vehicle System Dynamics, 2017, 55 (5): 681-703. doi: 10.1080/00423114.2016.1277769
    [11] 朱海燕, 张翼, 赵怀瑞, 等. 基于边界层控制的高速列车减阻技术[J]. 交通运输工程学报, 2017, 17 (2): 64-72. doi: 10.3969/j.issn.1671-1637.2017.02.007

    ZHU Hai-yan, ZHANG Yi, ZHAO Huai-rui, et al. Drag reduction technology of high-speed train based on boundary layer control[J]. Journal of Traffic and Transportation Engineering, 2017, 17 (2): 64-72. (in chinese). doi: 10.3969/j.issn.1671-1637.2017.02.007
    [12] 孙朋朋. 高速列车非光滑车身气动减阻特性研究[D]. 杭州: 浙江大学, 2012.

    SUN Peng-peng. Research on aerodynamic drag reduction of high-speed train with non-smooth surface[D]. Hangzhou: Zhejiang University, 2012. (in Chinese).
    [13] 杜健, 龚明, 田爱琴, 等. 基于仿生非光滑沟槽的高速列车减阻研究[J]. 铁道科学与工程学报, 2014, 11 (5): 70-76. doi: 10.3969/j.issn.1672-7029.2014.05.013

    DU Jian, GONG Ming, TIAN Ai-qin, et al. Study on the drag reduction of the high-speed train based on the bionic non-smooth riblets[J]. Journal of Railway Science and Engineering, 2014, 11 (5): 70-76. (in Chinese). doi: 10.3969/j.issn.1672-7029.2014.05.013
    [14] 梅毅, 曲建俊, 李岩. y+值对垂直轴风力机气动特性计算结果的影响[J]. 电力科学与工程, 2017, 33 (4): 60-64. doi: 10.3969/j.ISSN.1672-0792.2017.04.011

    MEI Yi, QU Jian-jun, LI Yan. Influence of y+ on the computation of vertical axis wind turbine aerodynamic performance[J]. Electric Power Science and Engineering, 2017, 33 (4): 60-64. (in Chinese). doi: 10.3969/j.ISSN.1672-0792.2017.04.011
    [15] 王超, 郑小龙, 李亮, 等. y+值对潜艇流场大涡模拟计算精度的影响[J]. 华中科技大学学报(自然科学版), 2015, 43 (4): 79-83. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201504016.htm

    WANG Chao, ZHENG Xiao-long, LI Liang, et al. Influence of y+ on the calculation of submarine flow field characteristics of LES calculation accuracy[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2015, 43 (4): 79-83. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201504016.htm
    [16] 于冲, 王旭, 董福安, 等. y+值对翼型气动参数计算精度的影响研究[J]. 空军工程大学学报(自然科学版), 2012, 13 (3): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-KJGC201203007.htm

    YU Chong, WANG Xu, DONG Fu-an, et al. The study of effect of y+ on precision of pneumatic parameters of foil[J]. Journal of Air Force Engineering University (Natural Science Edition), 2012, 13 (3): 25-29. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KJGC201203007.htm
    [17] 熊超强, 臧孟炎, 范秦寅. 低阻力汽车外流场的数值模拟及其误差分析[J]. 汽车工程, 2012, 34 (1): 36-39, 45. doi: 10.3969/j.issn.1000-680X.2012.01.009

    XIONG Chao-qiang, ZANG Meng-yan, FAN Qin-yin. Numerical simulaiton of external flow field around low drag car and its error analysis[J]. Automotive Engineering, 2012, 34 (1): 36-39, 45. (in Chinese). doi: 10.3969/j.issn.1000-680X.2012.01.009
    [18] 赖晨光, 任浡麒, 满超. y+值对地面交通工具气动阻力计算精度影响的研究[J]. 重庆理工大学学报(自然科学), 2015, 29 (10): 7-11. https://www.cnki.com.cn/Article/CJFDTOTAL-CGGL201510007.htm

    LAI Chen-guang, REN Bo-qi, MAN Chao. Research of effect of y+ on precision of aerodynamic drag of ground transportation[J]. Journal of Chongqing University of Technology (Natural Science), 2015, 29 (10): 7-11. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CGGL201510007.htm
    [19] TAN Xiao-ming, YANG Zhi-guang, TAN Xi-ming, et al. Vortex structures and aeroacoustic performance of the flow field of the pantograph[J]. Journal of Sound and Vibration, 2018, 432: 17-32. doi: 10.1016/j.jsv.2018.06.025
    [20] 李小珊, 孙桓五, 黄锦华. 两方程模型在汽车外流场数值计算中的实用性分析[J]. 机械科学与技术, 2011, 30 (8): 1296-1299. https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201108018.htm

    LI Xiao-shan, SUN Huan-wu, HUANG Jin-hua. The practicability of two-equation models on numerical simulation of automobile external flow field[J]. Mechanical Science and Technology for Aerospace Engineering, 2011, 30 (8): 1296-1299. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201108018.htm
    [21] 何忆斌, 谷正气, 吴军, 等. 三方程在汽车外流场仿真计算中的应用[J]. 机械工程学报, 2008, 44 (1): 184-189. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200801033.htm

    HE Yi-bin, GU Zheng-qi, WU Jun, et al. Application of three-equation turbulence model in numerical simulation of vehicle external flow field[J]. Chinese Journal of Mechanical Engineering, 2008, 44 (1): 184-189. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200801033.htm
    [22] OSTILLA-MÓNICO R, VERZICCO R, GROSSMANN S, et al. The near-wall region of highly turbulent Taylor-Couette flow[J]. Journal of Fluid Mechanics, 2016, 788: 95-117.
    [23] EISMA J, WESTERWEEL J, OOMS G, et al. Interfaces and internal layers in a turbulent boundary layer[J]. Physics of Fluids, 2015, 27 (5): 1-16.
    [24] PATEL A, BOERSMA B J, PECNIK, R. The influence of near-wall density and viscosity gradients on turbulence in channel flows[J]. Journal of Fluid Mechanics, 2016, 809: 793-820.
    [25] 黄乾. 基于大涡模拟的锯齿尾缘翼型流动分析及气动噪声预测[D]. 北京: 清华大学, 2015.

    HUANG Qian. A numerical study of the flow around airfoils with serrated trailing edges and the aerodynamic noise based on large eddy simulation[D]. Beijing: Tsinghua University, 2015. (in chinese).
    [26] ZHANG Y O, ZHANG T, OUYANG H, et al. Flow-induced noise analysis for 3D trash rack based on LES/Lighthill hybrid method[J]. Applied Acoustics, 2014, 79 (1): 141-152.
    [27] 王师. MIRA模型组气动特性模型风洞试验研究[D]. 长沙: 湖南大学, 2011.

    WANG Shi. Experimental investigation on aerodynamic characteristics of MIRA model group in wind tunnel[D]. Changsha: Hunan University, 2011. (in Chinese).
    [28] 黄志祥, 金华, 胡兴军, 等. 地面效应对汽车模型气动阻力的影响[J]. 交通运输工程学报, 2017, 17 (4): 106-112. http://transport.chd.edu.cn/article/id/201704011

    HUANG Zhi-xiang, JIN Hua, HU Xing-jun, et al. Influence of ground effect on air drag of car model[J]. Journal of Traffic and Transportation Engineering, 2017, 17 (4): 106-112. (in Chinese). http://transport.chd.edu.cn/article/id/201704011
    [29] LARSSON J, KAWAI S, BODART J, et al. Large eddy simulation with modeled wall-stress: recent progress and future directions[J]. Mechanical Engineering Reviews, 2016, 3 (1): 1-23.
    [30] BOSE S T, PARK G I. Wall-modeled large-eddy simulation for complex turbulent flows[J]. Annual Review of Fluid Mechanics, 2018, 50 (1): 535-561.
    [31] 谷正气, 王师, 仇健, 等. MIRA模型组尾部造型风洞试验研究[J]. 科技导报, 2011, 29 (8): 67-71. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201108023.htm

    GU Zheng-qi, WANG Shi, QIU Jian, et al. Wind tunnel tests of MIRA model group for study of vehicle's rear shape[J]. Science and Technology Review, 2011, 29 (8): 67-71. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201108023.htm
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  1849
  • HTML全文浏览量:  181
  • PDF下载量:  1164
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-15
  • 刊出日期:  2019-08-25

目录

    /

    返回文章
    返回