留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

驾驶人手机通话行为中基于图像特征决策融合的手势识别方法

程文冬 马勇 魏庆媛

程文冬, 马勇, 魏庆媛. 驾驶人手机通话行为中基于图像特征决策融合的手势识别方法[J]. 交通运输工程学报, 2019, 19(4): 171-181. doi: 10.19818/j.cnki.1671-1637.2019.04.016
引用本文: 程文冬, 马勇, 魏庆媛. 驾驶人手机通话行为中基于图像特征决策融合的手势识别方法[J]. 交通运输工程学报, 2019, 19(4): 171-181. doi: 10.19818/j.cnki.1671-1637.2019.04.016
CHENG Wen-dong, MA Yong, WEI Qing-yuan. Hand gesture recognition method in driver's phone-call behavior based on decision fusion of image features[J]. Journal of Traffic and Transportation Engineering, 2019, 19(4): 171-181. doi: 10.19818/j.cnki.1671-1637.2019.04.016
Citation: CHENG Wen-dong, MA Yong, WEI Qing-yuan. Hand gesture recognition method in driver's phone-call behavior based on decision fusion of image features[J]. Journal of Traffic and Transportation Engineering, 2019, 19(4): 171-181. doi: 10.19818/j.cnki.1671-1637.2019.04.016

驾驶人手机通话行为中基于图像特征决策融合的手势识别方法

doi: 10.19818/j.cnki.1671-1637.2019.04.016
基金项目: 

国家自然科学基金项目 51775053

陕西省自然科学基础研究计划 2018JM5158

详细信息
    作者简介:

    程文冬(1981-), 男, 河北保定人, 西安工业大学副教授, 工学博士, 从事智能车辆安全辅助驾驶技术研究

  • 中图分类号: U491.512

Hand gesture recognition method in driver's phone-call behavior based on decision fusion of image features

More Information
  • 摘要: 为鲁棒检测自然环境中驾驶人的通话行为, 提出了一种驾驶人手机通话手势的识别方法。运用Adaboost算法检测驾驶人面部区域, 在YCgCr色彩空间中分别对面部肤色亮度分量和色度分量进行稀疏网格间隔采样, 由此建立了肤色的高斯分布模型; 针对驾驶室光照强度的不均匀性, 提出了肤色分量的漂移补偿算法, 建立了适应光照变化的在线肤色模型, 以准确分割左右手部肤色区域; 运用HOG算法获取手部肤色区域的2 376维HOG特征向量, 运用PCA方法将HOG特征降至400维; 同时提取手部肤色区域的PZMs特征, 并采用Relief算法筛选出权重最大的8个PZMs特征向量, 建立了融合PCA-HOG特征和Relief-PZMs特征的通话手势支持向量机分类决策。试验结果表明: 基于PCA-HOG特征的手势识别率为93.1%, 对光照变化的鲁棒性较好, 但易受到手部与头部转动的干扰; 基于Relief-PZMs特征的手势识别率为91.9%, 对于头部与手部姿态的耐受度较好, 但光照鲁棒性较差; 基于PCA-HOG和Relief-PZMs多元特征融合方法的手势识别率达到94.5%, 对光照波动、手部与头部转动等干扰条件具有较好的适应性。

     

  • 图  1  左右手兴趣区域

    Figure  1.  Interesting regions of left and right hands

    图  2  Cg-Cr肤色建模过程

    Figure  2.  Cg-Cr skin color's modeling process

    图  3  手部肤色漂移

    Figure  3.  Skin color drift of hand

    图  4  肤色样本的色度漂移

    Figure  4.  Chromaticity drift of skin color samples

    图  5  驾驶人行为监测图像

    Figure  5.  Monitoring images of driver behaviors

    图  6  基于初始算法的手部肤色分割

    Figure  6.  Hand skin color segmentation based on original algorithm

    图  7  基于补偿算法的手部肤色分割

    Figure  7.  Hand skin color segmentation based on compensation algorithm

    图  8  HOG算法原理

    Figure  8.  Principle of HOG algorithm

    图  9  PZMs幅值统计

    Figure  9.  Statistics of PZMs amplitudes

    图  10  手部区域多元特征的决策融合方法

    Figure  10.  Decision fusion method of hand region multiple features

    图  11  手部肤色区域正样本

    Figure  11.  Positive samples of hand skin color region

    图  12  手部肤色区域负样本

    Figure  12.  Negative samples of hand skin color region

    图  13  PCA-HOG识别率与识别时间

    Figure  13.  Recognition rates and times of PCA-HOG

    图  14  PZMs权重

    Figure  14.  PZMs weights

    图  15  3种分类器的ROC曲线

    Figure  15.  ROC curves of three classifiers

    表  1  特征权重分配

    Table  1.   Distribution of characteristic weights

    特征权重 分类模型
    Relief-PZMs-SVM PCA-HOG-SVM
    阳性权重 396 419
    阳性权重归一化结果 0.486 0.514
    阴性权重 267 308
    阴性权重归一化结果 0.464 0.536
    下载: 导出CSV

    表  2  算法性能比较

    Table  2.   Performance comparison of algorithms

    算法 正检率/% 误检率/% 特征提取耗时/ms 总耗时/ms
    加权Hu矩 82.2 12.4 63.9 112.4
    PCA-SIFT 84.0 10.7 79.0 139.2
    HOG 91.5 5.1 821.0 905.3
    PCA-HOG 93.1 3.7 98.5 152.0
    Zernike矩 90.5 5.5 152.1 207.7
    PZMs 91.2 5.4 158.6 225.0
    Relief-PZMs 91.9 3.8 62.3 119.8
    本文算法 94.5 3.0 124.4 179.6
    下载: 导出CSV
  • [1] WHITE K M, HYDE M K, WALSH M P, et al. Mobile phone use while driving: an investigation of the beliefs influencing drivers' hands-free and hand-held mobile phone use[J]. Transportation Research Part F: Traffic Psychology and Behavior, 2010, 13 (1): 9-20. doi: 10.1016/j.trf.2009.09.004
    [2] 隋毅. 基于驾驶模拟实验的手机通话对驾驶安全的影响研究[D]. 北京: 北京交通大学, 2013.

    SUI Yi. Influence of cell phone use on driving safety base on driving simulator experiments[D]. Beijing: Beijing Jiaotong University, 2013. (in Chinese).
    [3] ABDUL SHABEER H, WAHIDABANU R S D. Cell phone accident avoidance system while driving[J]. International Journal of Soft Computing and Engineering, 2011, 1 (4): 144-147.
    [4] RODRIGUEZ-ASCARIZ J M, BOQUETE L, CANTOS J, et al. Automatic system for detecting driver use of mobile phones[J]. Transportation Research Part C: Emerging Technologies, 2011, 19 (4): 673-681. doi: 10.1016/j.trc.2010.12.002
    [5] 张波, 王文军, 魏民国, 等. 基于机器视觉的驾驶人使用手持电话行为检测[J]. 吉林大学学报(工学版), 2015, 45 (5): 1688-1695. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201505044.htm

    ZHANG Bo, WANG Wen-jun, WEI Min-guo, et al. Detection handheld phone use by driver based on machine vision[J]. Journal of Jilin University (Engineering and Technology Edition), 2015, 45 (5): 1688-1695. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201505044.htm
    [6] WANG Dan, PEI Ming-tao, ZHU Lan. Detecting driver use of mobile phone based on in-car camera[C]//IEEE. 10th International Conference on Computational Intelligence and Security. New York: IEEE, 2014: 148-151.
    [7] ZHAO Chi-liang, GAO Yong-sheng, HE Jie, et al. Recognition of driving postures by multiwavelet transform and multilayer perceptron classifier[J]. Engineering Applications of Artificial Intelligence, 2012, 25 (8): 1677-1686. doi: 10.1016/j.engappai.2012.09.018
    [8] STERGIOPOULOU E, SGOUROPOULOS K, NIKOLAOU N, et al. Real time hand detection in a complex background[J]. Engineering Applications of Artificial Intelligence, 2014, 35: 54-70. doi: 10.1016/j.engappai.2014.06.006
    [9] BAN Y, KIM S K, KIM S, et al. Face detection based on skin color likelihood[J]. Pattern Recognition, 2014, 47 (4): 1573-1585. doi: 10.1016/j.patcog.2013.11.005
    [10] KHAN R, HANBURY A, STÖTTINGER J, et al. Color based skin classification[J]. Pattern Recognition Letters, 2012, 33 (2): 157-163. doi: 10.1016/j.patrec.2011.09.032
    [11] 孙瑾, 丁永晖, 周来. 融合红外深度信息的视觉交互手部跟踪算法[J]. 光学学报, 2017, 37 (1): 0115002-1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201701029.htm

    SUN Jin, DING Yong-hui, ZHOU Lai. Visually interactive hand tracking algorithm combined with infrared depth information[J]. Acta Optica Sinica, 2017, 37 (1): 0115002-1-11. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201701029.htm
    [12] SESHADRI K, JUEFEI-XU F, PAL D K, et al. Driver cell phone usage detection on Strategic Highway Research Program (SHRP2) face view videos[C]//IEEE. IEEE Conference on Computer Vision and Pattern Recognition Workshops. New York: IEEE, 2015: 35-43.
    [13] LIU Yun, YIN Yan-min, ZHANG Shu-jun. Hand gesture recognition based on Hu moments in interaction of virtual reality[C]//IEEE. 2012 4th International Conference on Intelligent Human-Machine Systems and Cybernetics. New York: IEEE, 2012: 145-148.
    [14] ARTAN Y, BULAN O, LOCE R P, et al. Driver cell phone usage detection from HOV/HOT NIR images[C]//IEEE. 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops. New York: IEEE, 2014: 225-230.
    [15] 张汗灵, 李红英, 周敏. 融合多特征和压缩感知的手势识别[J]. 湖南大学学报(自然科学版), 2013, 40 (3): 87-92. doi: 10.3969/j.issn.1674-2974.2013.03.016

    ZHANG Han-ling, LI Hong-ying, ZHOU Min. Hand posture recognition based on multi-feature and compressive sensing[J]. Journal of Hunan University (Natural Sciences), 2013, 40 (3): 87-92. (in Chinese). doi: 10.3969/j.issn.1674-2974.2013.03.016
    [16] CHAE Y N, HAN T, SEO Y H, et al. An efficient face detection based on color-filtering and its application to smart devices[J]. Multimedia Tools and Applications, 2016, 75 (9): 4867-4886. doi: 10.1007/s11042-013-1786-0
    [17] KALIRAJ K, MANIMARAN S. Robust skin color-based moving object detection for video surveillance[J]. Journal of Electronic Imaging, 2016, 25 (4): 043007-1-8. doi: 10.1117/1.JEI.25.4.043007
    [18] DIOS J J D, GARCIA N. Face detection based on a new color space YCgCr[C]//IEEE. 2003 International Conference on Image Processing. New York: IEEE, 2003: 909-912.
    [19] 程文冬, 付锐, 袁伟, 等. 驾驶人注意力分散的图像检测与分级预警[J]. 计算机辅助设计与图形学学报, 2016, 28 (8): 1287-1296. doi: 10.3969/j.issn.1003-9775.2016.08.010

    CHENG Wen-dong, FU Rui, YUAN Wei, et al. Driver attention distraction detection and hierarchical prewarning based on machine vision[J]. Journal of Computer-Aided Design and Computer Graphics, 2016, 28 (8): 1287-1296. (in Chinese). doi: 10.3969/j.issn.1003-9775.2016.08.010
    [20] 梁敏健, 崔啸宇, 宋青松, 等. 基于HOG-Gabor特征融合与Softmax分类器的交通标志识别方法[J]. 交通运输工程学报, 2017, 17 (3): 151-158. doi: 10.3969/j.issn.1671-1637.2017.03.016

    LIANG Min-jian, CUI Xiao-yu, SONG Qing-song, et al. Traffic sign recognition method based on HOG-Gabor feature fusion and Softmax classifier[J]. Journal of Traffic and Transportation Engineering, 2017, 17 (3): 151-158. (in Chinese). doi: 10.3969/j.issn.1671-1637.2017.03.016
    [21] ZHENG Jin-qing, FENG Zhi-yong, XU Chao, et al. Fusing shape and spatio-temporal features for depth-based dynamic hand gesture recognition[J]. Multimedia Tools and Applications, 2017, 76 (20): 20525-20544. doi: 10.1007/s11042-016-3988-8
    [22] SAVAKIS A, SHARMA R, KUMAR M. Efficient eye detection using HOG-PCA descriptor[C]//SPIE. Imaging and Multimedia Analytics in a Web and Mobile World 2014. Bellingham: SPIE, 2014: 1-8.
    [23] WOLD S, ESBENSEN K, GELADI P. Principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1987, 2 (1-3): 37-52. doi: 10.1016/0169-7439(87)80084-9
    [24] DENG An-wen, GWO Chih-ying. Fast and stable algorithms for high-order Pseudo Zernike moments and image reconstruction[J]. Applied Mathematics and Computation, 2018, 334: 239-253. doi: 10.1016/j.amc.2018.04.001
    [25] BERA A, KLESK P, SYCHEL D. Constant-time calculation of Zernike moments for detection with rotational invariance[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 41 (3): 537-551.
    [26] JIA Jian-hua, YANG Ning, ZHANG Chao, et al. Object-oriented feature selection of high spatial resolution images using an improved Relief algorithm[J]. Mathematical and Computer Modelling, 2013, 58 (3/4): 619-626.
    [27] BURGES C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998, 2: 121-167. doi: 10.1023/A:1009715923555
    [28] 秦华标, 李雪梅, 仝锡民, 等. 复杂环境下基于多特征决策融合的眼睛状态识别[J]. 光电子·激光, 2014, 25 (4): 777-783. https://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ201404026.htm

    QIN Hua-biao, LI Xue-mei, TONG Xi-min, et al. Eye state recognition in complex environment based on multi-feature decision fusion[J]. Journal of Optoelectronics·Laser, 2014, 25 (4): 777-783. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ201404026.htm
    [29] SUN Ya-xin, WEN Gui-hua, WANG Jia-bing. Weighted spectral features based on local Hu moments for speech emotion recognition[J]. Biomedical Signal Processing and Control, 2015, 18: 80-90. doi: 10.1016/j.bspc.2014.10.008
    [30] 聂隐愚, 唐兆, 常建, 等. 基于单目图像的列车事故场景三维重建[J]. 交通运输工程学报, 2017, 17 (1): 149-158. http://transport.chd.edu.cn/article/id/201701017

    NIE Yin-yu, TANG Zhao, CHANG Jian, et al. 3D reconstruction of train accident scene based on monocular image[J]. Journal of Traffic and Transportation Engineering, 2017, 17 (1): 149-158. (in Chinese). http://transport.chd.edu.cn/article/id/201701017
    [31] LUO J, GWUN O. A comparison of SIFT, PCA-SIFT and SURF[J]. International Journal of Image Processing, 2009, 3 (4): 1-10.
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  1971
  • HTML全文浏览量:  185
  • PDF下载量:  1389
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-15
  • 刊出日期:  2019-08-25

目录

    /

    返回文章
    返回