[1] |
LIU Gang, GE Yong-feng, QIU T Z, et al. Optimization of snow plowing cost and time in an urban environment: a case study for the city of Edmonton[J]. Canadian Journal of Civil Engineering, 2014, 41 (7): 667-675. doi: 10.1139/cjce-2013-0409
|
[2] |
HAJIBABAI L. Scheduling and routing of service trucks and planning of resource replenishment locations for winter roadway maintenance[D]. Urbana: University of Illinois, 2014.
|
[3] |
QUIRION-BLAIS O, LANGEVIN A, LEHUÉDÉ F, et al. Solving the large-scale min-max K-rural postman problem for snow plowing[J]. Networks, 2017, 70 (3): 195-215. doi: 10.1002/net.21759
|
[4] |
XIE Bing-lei, JIN Lei, MU Wei. Snow disposal operations optimization in winter highway maintenance[C]//IEEE. 21th Annual International Conference on Management Science and Engineering. New York: IEEE, 2014: 227-232.
|
[5] |
XIE Bing-lei, LI Ying, JIN Lei. Vehicle routing optimization for deicing salt spreading in winter highway maintenance[J]. Procedia-Social and Behavioral Sciences, 2013, 96: 945-953. doi: 10.1016/j.sbspro.2013.08.108
|
[6] |
KINABLE J, VAN HOEVE W J, SMITH S F. Optimization models for a real-world snow plow pouting problem[C]//QUIMPER C G. Proceedings of 13th International Conference on Integration of Artificial Intelligence and Operations Research Techniques in Constraint Programming (CPAIOR 2016). Pittsburgh: Carnegie Mellon University, 2016: 229-245.
|
[7] |
AKBARI V, SALMAN F S. Multi-vehicle synchronized arc routing problem to restore post-disaster network connectivity[J]. European Journal of Operational Research, 2017, 257 (2): 625-640. doi: 10.1016/j.ejor.2016.07.043
|
[8] |
LU Song, XU Jin-yu, BAI Er-lei, et al. Investigating microwave deicing efficiency in concrete pavement[J]. RSC Advances, 2017, 7 (15): 9152-9159. doi: 10.1039/C6RA27109J
|
[9] |
MALEKI P, IRANPOUR B, SHAFABAKHSH G. Investigation of de-icing of roads with conductive concrete pavement containing carbon fibre-reinforced polymer (CFRP)[J]. International Journal of Pavement Engineering, 2019, 20 (6): 682-690. doi: 10.1080/10298436.2017.1326235
|
[10] |
YAO Xu-dan, HAWKINS S C, FALZON B G. An advanced anti-icing/de-icing system utilizing highly aligned carbon nanotube webs[J]. Carbon, 2018, 136: 130-138. doi: 10.1016/j.carbon.2018.04.039
|
[11] |
YI Yi, YU Jian-ying, CHEN Xiao, et al. Preparation and properties of a self-deicing coating based on layered double hydroxide[C]//Trans Tech Publications Ltd. . 17th IUMRS International Conference in Asia. Zurich: Trans Tech Publications Ltd., 2017: 1553-1560.
|
[12] |
CHEN Hua-xin, WU Yong-chang, XIA Hui-yun, et al. Review of ice-pavement adhesion study and development of hydrophobic surface in pavement deicing[J]. Journal of Traffic and Transportation Engineering (English Edition), 2018, 5 (3): 224-238. doi: 10.1016/j.jtte.2018.03.002
|
[13] |
邢志伟, 陈亚雄, 罗谦, 等. 枢纽机场道面除冰雪机群资源优化配置[J]. 中国民航大学学报, 2017, 35 (6): 36-40, 51. doi: 10.3969/j.issn.1674-5590.2017.06.008XING Zhi-wei, CHEN Ya-xiong, LUO Qian, et al. Optimization and allocation research of hub airport pavement fleet deicing resource[J]. Journal of Civil Aviation University of China, 2017, 35 (6): 36-40, 51. (in Chinese). doi: 10.3969/j.issn.1674-5590.2017.06.008
|
[14] |
FAGHRI A, LICHLITER A, FAGHRI A, et al. Assessing airport snow and ice removal and its economic implications for sustainable airport management[J]. Journal of Airport Management, 2014, 8 (2): 174-188.
|
[15] |
PERRIER N, LANGEVIN A, CAMPBELL J F. A survey of models and algorithms for winter road maintenance. Part I: system design for spreading and plowing[J]. Computers and Operations Research, 2006, 33 (1): 209-238. doi: 10.1016/j.cor.2004.07.006
|
[16] |
王祥科, 李迅, 郑志强. 多智能体系统编队控制相关问题研究综述[J]. 控制与决策, 2013, 28 (11): 1601-1613. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201311001.htmWANG Xiang-ke, LI Xun, ZHENG Zhi-qiang. Survey of developments on multi-agent formation control related problems[J]. Control and Decision, 2013, 28 (11): 1601-1613. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201311001.htm
|
[17] |
WANG He-sheng, GUO De-jun, LIANG Xin-wu, et al. Adaptive vision-based leader-follower formation control of mobile robots[J]. IEEE Transactions on Industrial Electronics, 2017, 64 (4): 2893-2903. doi: 10.1109/TIE.2016.2631514
|
[18] |
WANG Xiang-ke, ZENG Zhi-wei, CONG Yi-rui. Multi-agent distributed coordination control: developments and directions via graph view point[J]. Neurocomputing, 2016, 199: 204-218. doi: 10.1016/j.neucom.2016.03.021
|
[19] |
SALEHIZADEH M, DILLER E. Two-agent formation control of magnetic micro-robots in two dimensions[J]. Journal of Micro-Bio Robotics, 2017, 12 (1-4): 9-19. doi: 10.1007/s12213-017-0095-5
|
[20] |
ALONSO-MORA J, BAKER S, RUS D. Multi-robot formation control and object transport in dynamic environments via constrained optimization[J]. International Journal of Robotics Research, 2017, 36 (9): 1000-1021. doi: 10.1177/0278364917719333
|
[21] |
OH K K, PARK M C, AHN H S. A survey of multi-agent formation control[J]. Automatica, 2015, 53: 424-440. doi: 10.1016/j.automatica.2014.10.022
|
[22] |
WANG Li-li, HAN Zhi-min, LIN Zhi-yun. Formation control of directed multi-agent networks based on complex Laplacian[C]//IEEE. Proceedings of the 51st IEEE Conference on Decision and Control. New York: IEEE, 2012: 5292-5297.
|
[23] |
HAN Zhi-min, LIN Zhi-yun, FU Min-yue, et al. Distributed coordination in multi-agent systems: a graph Laplacian perspective[J]. Frontiers of Information Technology and Electronic Engineering, 2015, 16 (6): 429-448. doi: 10.1631/FITEE.1500118
|
[24] |
LIN Zhi-yun, WANG Li-li, HAN Zhi-min, et al. Distributed formation control of multi-agent systems using complex Laplacian[J]. IEEE Transactions on Automatic Control, 2014, 59 (7): 1765-1777. doi: 10.1109/TAC.2014.2309031
|
[25] |
罗小元, 邵士凯, 关新平, 等. 多智能体最优持久图编队动态生成与控制[J]. 自动化学报, 2013, 39 (9): 1431-1438. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201309005.htmLUO Xiao-yuan, SHAO Shi-kai, GUAN Xin-ping, et al. Dynamic generation and control of optimally persistent formation for multi-agent systems[J]. Acta Automatica Sinica, 2013, 39 (9): 1431-1438. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201309005.htm
|
[26] |
HENDRICKX J M, ANDERSON B D O, DELVENNE J C, et al. Directed graphs for the analysis of rigidity and persistence in autonomous agent systems[J]. International Journal of Robust and Nonlinear Control, 2007, 17 (10/11): 960-981.
|
[27] |
罗小元, 杨帆, 李绍宝, 等. 多智能体系统的最优持久编队生成策略[J]. 自动化学报, 2014, 40 (7): 1311-1319. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201407006.htmLUO Xiao-yuan, YANG Fan, LI Shao-bao, et al. Generation of optimally persistent formation for multi-agent systems[J]. Acta Automatica Sinica, 2014, 40 (7): 1311-1319. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201407006.htm
|
[28] |
刘春, 宗群, 窦立谦. 基于持久图的双轮机器人编队生成与控制[J]. 控制工程, 2017, 24 (3): 518-523. https://www.cnki.com.cn/Article/CJFDTOTAL-JZDF201703008.htmLIU Chun, ZONG Qun, DOU Li-qian. Generation and control of wheeled robots formation based on persistent graph theory[J]. Control Engineering of China, 2017, 24 (3): 518-523. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZDF201703008.htm
|
[29] |
MENG De-yuan, JIA Ying-min, DU Jun-ping, et al. On iterative learning algorithms for the formation control of nonlinear multi-agent systems[J]. Automatica, 2014, 50 (1): 291-295. doi: 10.1016/j.automatica.2013.11.009
|
[30] |
YANG Tao, MENG Zi-yang, DIMAROGONAS D V. Global consensus for discrete-time multi-agent systems with input saturation constrains[J]. Automatica, 2014, 50: 499-506. doi: 10.1016/j.automatica.2013.11.008
|