-
摘要: 针对弱胶结富水粉细砂岩极易突水涌砂导致的隧道掌子面坍塌和初期支护开裂变形, 研究了深埋隧道内超前深孔降水方法, 建立了模拟隧道内超前降水的实体模型, 分析了3种降水管和3种抽水泵功率下各时刻模型的水位面变化, 采用三轴试验分析了粉细砂岩在高含水率下的破坏状态。研究结果表明: 降水试验模型切向断面上同一标高测点处中间水头低, 两侧水头逐渐升高, 呈抛物线形式, 反映了超前深孔降水规律; 粉细砂岩在高、低含水率下均呈塑性破坏, 破坏时的轴向应变小于5%;降水过程中地层含水率从20%下降到11%时, 粉细砂岩强度、黏聚力和内摩擦角达到最优稳定状态, 实现了开挖面无水状态; 隧道内超前降水参数应采用管径为65 mm的真空降水管和抽水功率为7.5 kW的真空泵, 且降水管应布置在超前掌子面20 m的隧道两侧边墙处; 在富水粉细砂岩深埋隧道内超前深孔预先降水并辅以注浆加固, 能够实现开挖期间粉细砂岩稳定, 为隧道顺利施工奠定了基础, 也避免了大埋深隧道从地表进行深井降水的困难。Abstract: For the problem of tunnel palm surface collapsing and initial support cracking deformation caused by the sudden water surge in the weak glue-rich water powder fine sandstone, the advanced deep hole dewatering method in deep-buried tunnel was studied. A solid model for simulating the tunnel advanced dewatering was established. The water level surface changes of the model at each moment under 3 kinds of dewatering tubes and 3 kinds of pumping powers were analyzed. The three-axis test was used to analyze the failure state of powder fine sandstone with high water content. Research result shows that the water head in the middle part of dewatering test model at the same elevation measuring point on the tangent section is low, rises gradually on both sides, and is in a parabola form, reflecting the dewatering laws of advanced deep hole. The powder fine sandstone failures plastically under high and low water contents, and the axial strain at the failure is less than 5%. In the dewatering process, when the stratum water content decreases from 20% to 11%, the strength, cohesion, and internal friction angle of powder fine sandstone reach the optimal stable states, realizing the waterless state of excavation surface. The advanced dewatering parameters in the tunnel should be the vacuum dewatering pipe with the diameter of 65 mm and the vacuum pump with the pumping power of 7.5 kW. The dewatering pipe should be arranged at the side walls on both sides of tunnel and at 20 m ahead of tunnel palm surface. The advanced deep hole dewatering supplemented with grouting reinforcement in the deep-buried tunnels with rich water powder fine sandstone can achieve the stability of powder fine sandstone during the excavation. It lays the foundation for the smooth construction of tunnel, and avoids the difficulty of deep well dewatering from the surface in the deep-buried tunnels.
-
Key words:
- tunnel engineering /
- rich water powder fine sandstone /
- advanced deep hole /
- model test /
- dewatering law
-
表 1 三种管径下不同时刻水位面比较
Table 1. Comparison of water level surfaces at different times under three tube diameters
管径/mm 不同降水时间(min)的水位面/mm 30 60 90 120 150 180 35 1 970 1 900 1 870 1 835 1 795 1 755 45 1 915 1 840 1 815 1 765 1 740 1 685 65 1 595 1 525 1 480 1 436 1 390 1 336 表 2 三种抽水功率下不同时刻水位面比较
Table 2. Comparison of water level surfaces at different times under three pumping powers
降水泵功率/kW 不同降水时间(min)的水位面/mm 30 60 90 120 150 180 4.5 1 730 1 660 1 605 1 576 1 525 1 475 7.5 1 595 1 525 1 480 1 436 1 390 1 336 15.0 1 445 1 376 1 314 1 268 1 224 1 154 -
[1] 杨勇. 洞内降水在富水砂层浅埋暗挖隧道施工中的应用[J]. 市政技术, 2009, 27(4): 382-384. doi: 10.3969/j.issn.1009-7767.2009.04.018YANG Yong. Application of vacuuming ground-water lowering inside the shallow excavation tunnel in sandy watery stratum[J]. Municipal Engineering Technology, 2009, 27(4): 382-384. (in Chinese). doi: 10.3969/j.issn.1009-7767.2009.04.018 [2] 史文杰. 饱和粉质砂土内浅埋暗挖法施工降水技术[J]. 隧道建设, 2005, 25(2): 34-35. doi: 10.3969/j.issn.1672-741X.2005.02.011SHI Wen-jie. Dewatering technology for construction of saturated powdery sand by shallow buried excavation[J]. Tunnel Construction, 2005, 25(2): 34-35. (in Chinese). doi: 10.3969/j.issn.1672-741X.2005.02.011 [3] 王和平, 梅胜. 真空点井降水工程中有关问题的探讨[J]. 广东工业大学学报, 2001, 18(3): 110-114. doi: 10.3969/j.issn.1007-7162.2001.03.024WANG He-ping, MEI Sheng. Discussion on issues of vacuum point well in dewatering engineering[J]. Journal of Guangdong University of Technology, 2001, 18(3): 110-114. (in Chinese). doi: 10.3969/j.issn.1007-7162.2001.03.024 [4] 卓越, 张民庆. 洞内轻型井点降水的研究与应用[J]. 施工技术, 1994(9): 39-41. https://www.cnki.com.cn/Article/CJFDTOTAL-SGJS409.016.htmZHUO Yue, ZHANG Min-qing. Study and application of light well point dewatering in tunnel[J]. Construction Technology, 1994(9): 39-41. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SGJS409.016.htm [5] 田胜利. 超前管井井点降水在沙坡头引水隧道中的施工及应用[J]. 科技信息, 2010(13): 694-695. doi: 10.3969/j.issn.1001-9960.2010.13.556TIAN Sheng-li. Construction and application of dewatering of well point in Shapotou Water Diversion Tunnel[J]. Science and Technology Information, 2010(13): 694-695. (in Chinese). doi: 10.3969/j.issn.1001-9960.2010.13.556 [6] 王立平. 基坑水平井降水试验及数值模拟研究[D]焦作: 河南理工大学, 2009.WANG Li-ping. The study on test and numerical simulation about dewatering of horizontal well[D]. Jiaozuo: Henan University of Technology, 2009. (in Chinese). [7] 张建奇. 降水措施在第三系富水砂岩隧道施工中的应用[J]. 铁道建筑, 2013(8): 76-78. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201308027.htmZHANG Jian-qi. Application of dewatering measures in construction of third series water rich sandstone tunnel[J]. Railway Engineering, 2013(8): 76-78. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201308027.htm [8] 张学文. 桃树坪隧道穿越富水粉细砂地层双导洞超前法施工技术[J]. 隧道建设, 2016, 36(5): 577-584. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201605018.htmZHANG Xue-wen. Advanced double-drift construction technologies for Taoshuping Tunnel crossing water-rich fine silty sand strata[J]. Tunnel Construction, 2016, 36(5): 577-584. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201605018.htm [9] 祁卫华. 第三系富水砂岩铁路隧道施工技术[J]. 现代隧道技术, 2015, 52(1): 577-584. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201501026.htmQI Wei-hua. Construction of a railway tunnel in water-rich tertiary sandstone[J]. Moderm Tunnelling Technology, 2015, 52(1): 577-584. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201501026.htm [10] 熊春庚. 第三系富水泥质弱胶结粉细砂岩隧道施工关键技术[J]. 兰州交通大学学报, 2017, 36(4): 60-66. doi: 10.3969/j.issn.1001-4373.2017.04.010XIONG Chun-geng. The key technology of the construction of the tertiary water-rich and weakly cemented sandstone tunnel[J]. Journal of Lanzhou Jiaotong University, 2017, 36(4): 60-66. (in Chinese). doi: 10.3969/j.issn.1001-4373.2017.04.010 [11] 李国良, 王飞. 第三系泥质弱胶结富水粉细砂岩隧道主要技术措施研究[J]. 重庆交通大学学报(自然科学版), 2015, 34(4): 39-44. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201504007.htmLI Guo-liang, WANG Fei. Major technical measures of the third series argillaceous weak cementation rich water silty sand rock tunnelss[J]. Journal of Chonqing Jiaotong University(Natural Science), 2015, 34(4): 39-44. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201504007.htm [12] 张民庆, 何志军, 肖广智, 等. 第三系富水砂层隧道工程特性与施工技术研究[J]. 铁道工程学报, 2016(9): 76-81. doi: 10.3969/j.issn.1006-2106.2016.09.014ZHANG Min-qing, HE Zhi-jun, XIAO Guang-zhi, et al. Research on the tunnel engineering characteristics and construction technology of the tertiary water rich sand[J]. Journal of Railway Engineering Society, 2016(9): 76-81. (in Chinese). doi: 10.3969/j.issn.1006-2106.2016.09.014 [13] 李世才, 石光荣, 伍军. 桃树坪隧道富水未成岩粉细砂预加固施工技术[J]. 现代隧道技术, 2011, 48(2): 116-119. doi: 10.3969/j.issn.1009-6582.2011.02.023LI Shi-cai, SHI Guang-rong, WU Jun. Construction techniques of advance reinforcement for immature fine sandstone stratum with rich water in Taoshuping Tunnel[J]. Modern Tunnelling Technology, 2011, 48(2): 116-119. (in Chinese). doi: 10.3969/j.issn.1009-6582.2011.02.023 [14] 张再仁. 桃树坪隧道深井降水技术[J]. 铁道建筑技术, 2014(7): 78-80, 100. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJS201407022.htmZHANG Zai-ren. Deep well water drainage technology for Taoshuping Tunnel[J]. Railway Construction Technology, 2014(7): 78-80, 100. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDJS201407022.htm [15] 王广宏, 罗利彬. 富水未成岩粉细砂层隧道降水技术研讨[J]. 隧道建设, 2018, 38(增1): 142-147. doi: 10.3973/j.issn.2096-4498.2018.S1.022WANG Guang-hong, LUO Li-bin. Study of tunnel dewatering technology in water-rich immature fine silty sand strata[J]. Tunnel Construction, 2018, 38(S1): 142-147. (in Chinese). doi: 10.3973/j.issn.2096-4498.2018.S1.022 [16] 周伟. 浅谈地铁隧道浅埋暗挖施工降水技术[J]. 中国新技术新产品, 2011(10): 124. doi: 10.3969/j.issn.1673-9957.2011.10.119ZHOU Wei. Discussion dewatering technology of the construction of shallow buried excavation in the subway tunnel[J]. China New Technologies and Products, 2011(10): 124. (in Chinese). doi: 10.3969/j.issn.1673-9957.2011.10.119 [17] 哈吉章, 黄威望, 邵大鹏. 砂卵石地层出水隧道施工综合技术[J]. 现代隧道技术, 2011, 48(2): 128-131, 136. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201102025.htmHA Ji-zhang, HUANG Wei-wang, SHAO Da-peng. Comprehensive construction techniques for a tunnel in water-soaked gravel and sand[J]. Modern Tunnelling Technology, 2011, 48(2): 128-131, 136. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201102025.htm [18] 杨保旭. 富水砂岩泥岩隧道泄水降水减压施工技术研究[J]. 铁道建筑技术, 2017(9): 66-68, 80. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJS201709018.htmYANG Bao-xu. Study on construction technology of sluicing and dewatering decompression in water-rich sandstone and mudstone tunnel[J]. Railway Construction Technology, 2017(9): 66-68, 80. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDJS201709018.htm [19] 潘秀明, 汪国锋, 雷军. 等. 真空管井复合降水技术及其在地铁施工中的应用研究[J]. 铁道标准设计, 2018(12): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS200812025.htmPAN Xiu-ming, WANG Guo-feng, LEI Jun, et al. True air pipe well recombination water technology and its application in the ground iron engineering research[J]. Railway Stanadrd Design, 2018(12): 58-62. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS200812025.htm [20] 黄俊, 张顶立, 陈来生. 富水软弱地层地铁隧道浅埋暗挖施工技术[J]. 岩土工程技术, 2004, 18(6): 295-298. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGJ200406006.htmHUANG Jun, ZHANG Ding-li, CHEN Lai-sheng. Shallow tunnel construction technology in watery and weak straum[J]. Geotechnical Engineering Technique, 2004, 18(6): 295-298. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGJ200406006.htm [21] 邹翀, 张文新, 李治国, 等. 一种深埋隧道超前降水方法: 中国, 201210140354.7[P]. 2014-04-09.ZOU Chong, ZHANG Wen-xin, LI Zhi-guo, et al. An advanced dewatering method for deep buried tunnels: China, 201210140354.7[P]. 2014-04-09. (in Chinese). [22] 邹翀, 张文新, 李治国, 等. 一种开挖深埋隧道时洞内综合降水的施工方法: 中国, 201310240988.4[P]. 2015-08-12. [23] 武立波, 牛富俊, 林战举. 等. 换填与降排水措施对寒区沟谷软弱路基冻结特征的影响[J]. 交通运输工程学报, 2018, 18(4): 22-33. http://transport.chd.edu.cn/article/id/201804003WU Li-bo, NIU Fu-jun, LIN Zhan-ju, et al. Effect of replacing-filling and dewatering-draining measures on frozen characteristics of weak subgrade in cold valley region[J]. Journal of Traffic and Transportation Engineering, 2018, 18(4): 22-33. (in Chinese). http://transport.chd.edu.cn/article/id/201804003 [24] 曾铃, 刘杰, 史振宁. 坡积土边坡裂隙各向异性特征对雨水入渗过程的影响[J]. 交通运输工程学报, 2018, 18(4): 34-43. http://transport.chd.edu.cn/article/id/201804004ZENG Ling, LIU Jie, SHI Zhen-ning. Effect of colluvial soil slope fracture's anisotropy characteristics on rainwater infiltration process[J]. Journal of Traffic and Transportation Engineering, 2018, 18(4): 34-43. (in Chinese). http://transport.chd.edu.cn/article/id/201804004 [25] 王庆林, 刘晓翔. 桃树坪隧道、胡麻岭隧道第三系富水粉细砂层围岩含水率与稳定性关系浅析[J]. 现代隧道技术, 2012, 49(4): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201204003.htmWANG Qing-lin, LIU Xiao-xiang. Analysis of the relationship of water ratio to the stability of surrounding rock in a tertiary water-rich fine sandstone stratum[J]. Modern Tunnelling Technology, 2012, 49(4): 1-5. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201204003.htm [26] 高勤运. 兰渝铁路隧道第三系砂岩含水率与围岩稳定性关系研究[J]. 铁道建筑, 2015(3): 62-64. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201503018.htmGAO Qin-yun. Relationship study of water content and surrounding rock stability in third series sandstone of Lanyu Railway Tunnel[J]. Railway Engineering, 2015(3): 62-64. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201503018.htm [27] 晏长根, 邹群, 许昱, 等. 砂夹层黄土路基水分迁移规律[J]. 交通运输工程学报, 2016, 16(6): 21-29. http://transport.chd.edu.cn/article/id/201606003YAN Chang-gen, ZOU Qun, XU Yu, et al. Warer migration rule of loess subgrade with sand interlayers[J]. Journal of Traffic and Transportation Engineering, 2016, 16(6): 21-29. (in Chinese). http://transport.chd.edu.cn/article/id/201606003 [28] 韩龙武, 蔡汉成, 程佳, 等. 莫斯科—喀山高速铁路沿线季节性冻土冻融特征[J]. 交通运输工程学报, 2018, 18(3): 44-55. http://transport.chd.edu.cn/article/id/201803005HAN Long-wu, CAI Han-cheng, CHENG Jia, et al. Freezing and thawing characteristics of seasonal frozen soil along Moscow-Kazan High-Speed Railway[J]. Journal of Traffic and Transportation Engineering, 2018, 18(3): 44-55. (in Chinese). http://transport.chd.edu.cn/article/id/201803005 [29] 段伟, 蔡国军, 刘松玉, 等. 无黏性土的电阻率CPTU状态参数确定方法及其液化评价[J]. 交通运输工程学报, 2019, 19(2): 59-68. http://transport.chd.edu.cn/article/id/201902006DUAN Wei, CAI Guo-jun, LIU Song-yu, et al. Determining method of cohesionless soil state parameter based on resistivity CPTU and liquefaction evaluation[J]. Journal of Traffic and Transportation Engineering, 2019, 19(2): 59-68. (in Chinese). http://transport.chd.edu.cn/article/id/201902006 [30] 冯忠居, 王溪清, 李孝雄, 等. 强震作用下的砂土液化对桩基力学特性影响[J]. 交通运输工程学报, 2019, 19(1): 71-84. http://transport.chd.edu.cn/article/id/201901008FENG Zhong-ju, WANG Xi-qing, LI Xiao-xiong, et al. Effect of sand liquefaction on mechanical properties of pile foundation under strong earthquake[J]. Journal of Traffic and Transportation Engineering, 2019, 19(1): 71-84. (in Chinese). http://transport.chd.edu.cn/article/id/201901008