留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深埋隧道内超前深孔降水模型试验

邹翀 雷胜友 张文新

邹翀, 雷胜友, 张文新. 深埋隧道内超前深孔降水模型试验[J]. 交通运输工程学报, 2019, 19(5): 42-52. doi: 10.19818/j.cnki.1671-1637.2019.05.005
引用本文: 邹翀, 雷胜友, 张文新. 深埋隧道内超前深孔降水模型试验[J]. 交通运输工程学报, 2019, 19(5): 42-52. doi: 10.19818/j.cnki.1671-1637.2019.05.005
ZOU Chong, LEI Sheng-you, ZHANG Wen-xin. Dewatering model test of advanced deep hole in deep-buried tunnel[J]. Journal of Traffic and Transportation Engineering, 2019, 19(5): 42-52. doi: 10.19818/j.cnki.1671-1637.2019.05.005
Citation: ZOU Chong, LEI Sheng-you, ZHANG Wen-xin. Dewatering model test of advanced deep hole in deep-buried tunnel[J]. Journal of Traffic and Transportation Engineering, 2019, 19(5): 42-52. doi: 10.19818/j.cnki.1671-1637.2019.05.005

深埋隧道内超前深孔降水模型试验

doi: 10.19818/j.cnki.1671-1637.2019.05.005
基金项目: 

国家高技术研究发展计划项目 2012AA041802

国家重点研发计划项目 2013CB036006

铁道部科技研究开发计划项目 2011G004

详细信息
    作者简介:

    邹翀(1971-), 男, 江西南昌人, 中国中铁隧道勘察设计研究院有限公司教授级高级工程师, 从事隧道与地下工程施工管理和技术研究

    通讯作者:

    张文新(1981-), 男, 山西洪洞人, 中国中铁隧道勘察设计研究院有限公司高级工程师

  • 中图分类号: U455.49

Dewatering model test of advanced deep hole in deep-buried tunnel

More Information
    Author Bio:

    ZOU Chong(1971-), male, professor, 531919647@qq.com

    ZHANG Wen-xin(1981-), male, senior engineer, zwx1981112@163.com

  • 摘要: 针对弱胶结富水粉细砂岩极易突水涌砂导致的隧道掌子面坍塌和初期支护开裂变形, 研究了深埋隧道内超前深孔降水方法, 建立了模拟隧道内超前降水的实体模型, 分析了3种降水管和3种抽水泵功率下各时刻模型的水位面变化, 采用三轴试验分析了粉细砂岩在高含水率下的破坏状态。研究结果表明: 降水试验模型切向断面上同一标高测点处中间水头低, 两侧水头逐渐升高, 呈抛物线形式, 反映了超前深孔降水规律; 粉细砂岩在高、低含水率下均呈塑性破坏, 破坏时的轴向应变小于5%;降水过程中地层含水率从20%下降到11%时, 粉细砂岩强度、黏聚力和内摩擦角达到最优稳定状态, 实现了开挖面无水状态; 隧道内超前降水参数应采用管径为65 mm的真空降水管和抽水功率为7.5 kW的真空泵, 且降水管应布置在超前掌子面20 m的隧道两侧边墙处; 在富水粉细砂岩深埋隧道内超前深孔预先降水并辅以注浆加固, 能够实现开挖期间粉细砂岩稳定, 为隧道顺利施工奠定了基础, 也避免了大埋深隧道从地表进行深井降水的困难。

     

  • 图  1  隧道地质情况

    Figure  1.  Geological condition of tunnel

    图  2  超前降水管布置

    Figure  2.  Advanced dewatering pipes arrangement

    图  3  水平降水管位置(单位: mm)

    Figure  3.  Positions of horizontal dewatering tubes (unit: mm)

    图  4  模型试验的水平降水系统

    Figure  4.  Horizontal dewatering system in model test

    图  5  水位监测系统

    Figure  5.  Water level monitoring system

    图  6  三种管径下降水90 min时的水位面

    Figure  6.  Water level surfaces after 90 min of dewatering under three tube diameters

    图  7  三种管径降水90 min时的水位曲线

    Figure  7.  Water level curves after 90 min of dewatering under three tube diameters

    图  8  三种轴水功率下降水90 min时的水位面

    Figure  8.  Water level surfaces after 90 min of dewatering under three pumping powers

    图  9  三种轴水功率下降水90 min时的水位曲线

    Figure  9.  Water level curves after 90 min of dewatering under three pumping powers

    图  10  超前降水

    Figure  10.  Advanced dewatering

    图  11  含水率变化曲线

    Figure  11.  Water content change curves

    图  12  不同含水率下粉细砂岩应力-轴向应变关系曲线

    Figure  12.  Relationship curves of powder fine sandstone stress and axial strain under different water contents

    图  13  超前注浆管布置

    Figure  13.  Advanced grouting pipes layout

    表  1  三种管径下不同时刻水位面比较

    Table  1.   Comparison of water level surfaces at different times under three tube diameters

    管径/mm 不同降水时间(min)的水位面/mm
    30 60 90 120 150 180
    35 1 970 1 900 1 870 1 835 1 795 1 755
    45 1 915 1 840 1 815 1 765 1 740 1 685
    65 1 595 1 525 1 480 1 436 1 390 1 336
    下载: 导出CSV

    表  2  三种抽水功率下不同时刻水位面比较

    Table  2.   Comparison of water level surfaces at different times under three pumping powers

    降水泵功率/kW 不同降水时间(min)的水位面/mm
    30 60 90 120 150 180
    4.5 1 730 1 660 1 605 1 576 1 525 1 475
    7.5 1 595 1 525 1 480 1 436 1 390 1 336
    15.0 1 445 1 376 1 314 1 268 1 224 1 154
    下载: 导出CSV
  • [1] 杨勇. 洞内降水在富水砂层浅埋暗挖隧道施工中的应用[J]. 市政技术, 2009, 27(4): 382-384. doi: 10.3969/j.issn.1009-7767.2009.04.018

    YANG Yong. Application of vacuuming ground-water lowering inside the shallow excavation tunnel in sandy watery stratum[J]. Municipal Engineering Technology, 2009, 27(4): 382-384. (in Chinese). doi: 10.3969/j.issn.1009-7767.2009.04.018
    [2] 史文杰. 饱和粉质砂土内浅埋暗挖法施工降水技术[J]. 隧道建设, 2005, 25(2): 34-35. doi: 10.3969/j.issn.1672-741X.2005.02.011

    SHI Wen-jie. Dewatering technology for construction of saturated powdery sand by shallow buried excavation[J]. Tunnel Construction, 2005, 25(2): 34-35. (in Chinese). doi: 10.3969/j.issn.1672-741X.2005.02.011
    [3] 王和平, 梅胜. 真空点井降水工程中有关问题的探讨[J]. 广东工业大学学报, 2001, 18(3): 110-114. doi: 10.3969/j.issn.1007-7162.2001.03.024

    WANG He-ping, MEI Sheng. Discussion on issues of vacuum point well in dewatering engineering[J]. Journal of Guangdong University of Technology, 2001, 18(3): 110-114. (in Chinese). doi: 10.3969/j.issn.1007-7162.2001.03.024
    [4] 卓越, 张民庆. 洞内轻型井点降水的研究与应用[J]. 施工技术, 1994(9): 39-41. https://www.cnki.com.cn/Article/CJFDTOTAL-SGJS409.016.htm

    ZHUO Yue, ZHANG Min-qing. Study and application of light well point dewatering in tunnel[J]. Construction Technology, 1994(9): 39-41. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SGJS409.016.htm
    [5] 田胜利. 超前管井井点降水在沙坡头引水隧道中的施工及应用[J]. 科技信息, 2010(13): 694-695. doi: 10.3969/j.issn.1001-9960.2010.13.556

    TIAN Sheng-li. Construction and application of dewatering of well point in Shapotou Water Diversion Tunnel[J]. Science and Technology Information, 2010(13): 694-695. (in Chinese). doi: 10.3969/j.issn.1001-9960.2010.13.556
    [6] 王立平. 基坑水平井降水试验及数值模拟研究[D]焦作: 河南理工大学, 2009.

    WANG Li-ping. The study on test and numerical simulation about dewatering of horizontal well[D]. Jiaozuo: Henan University of Technology, 2009. (in Chinese).
    [7] 张建奇. 降水措施在第三系富水砂岩隧道施工中的应用[J]. 铁道建筑, 2013(8): 76-78. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201308027.htm

    ZHANG Jian-qi. Application of dewatering measures in construction of third series water rich sandstone tunnel[J]. Railway Engineering, 2013(8): 76-78. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201308027.htm
    [8] 张学文. 桃树坪隧道穿越富水粉细砂地层双导洞超前法施工技术[J]. 隧道建设, 2016, 36(5): 577-584. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201605018.htm

    ZHANG Xue-wen. Advanced double-drift construction technologies for Taoshuping Tunnel crossing water-rich fine silty sand strata[J]. Tunnel Construction, 2016, 36(5): 577-584. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201605018.htm
    [9] 祁卫华. 第三系富水砂岩铁路隧道施工技术[J]. 现代隧道技术, 2015, 52(1): 577-584. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201501026.htm

    QI Wei-hua. Construction of a railway tunnel in water-rich tertiary sandstone[J]. Moderm Tunnelling Technology, 2015, 52(1): 577-584. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201501026.htm
    [10] 熊春庚. 第三系富水泥质弱胶结粉细砂岩隧道施工关键技术[J]. 兰州交通大学学报, 2017, 36(4): 60-66. doi: 10.3969/j.issn.1001-4373.2017.04.010

    XIONG Chun-geng. The key technology of the construction of the tertiary water-rich and weakly cemented sandstone tunnel[J]. Journal of Lanzhou Jiaotong University, 2017, 36(4): 60-66. (in Chinese). doi: 10.3969/j.issn.1001-4373.2017.04.010
    [11] 李国良, 王飞. 第三系泥质弱胶结富水粉细砂岩隧道主要技术措施研究[J]. 重庆交通大学学报(自然科学版), 2015, 34(4): 39-44. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201504007.htm

    LI Guo-liang, WANG Fei. Major technical measures of the third series argillaceous weak cementation rich water silty sand rock tunnelss[J]. Journal of Chonqing Jiaotong University(Natural Science), 2015, 34(4): 39-44. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201504007.htm
    [12] 张民庆, 何志军, 肖广智, 等. 第三系富水砂层隧道工程特性与施工技术研究[J]. 铁道工程学报, 2016(9): 76-81. doi: 10.3969/j.issn.1006-2106.2016.09.014

    ZHANG Min-qing, HE Zhi-jun, XIAO Guang-zhi, et al. Research on the tunnel engineering characteristics and construction technology of the tertiary water rich sand[J]. Journal of Railway Engineering Society, 2016(9): 76-81. (in Chinese). doi: 10.3969/j.issn.1006-2106.2016.09.014
    [13] 李世才, 石光荣, 伍军. 桃树坪隧道富水未成岩粉细砂预加固施工技术[J]. 现代隧道技术, 2011, 48(2): 116-119. doi: 10.3969/j.issn.1009-6582.2011.02.023

    LI Shi-cai, SHI Guang-rong, WU Jun. Construction techniques of advance reinforcement for immature fine sandstone stratum with rich water in Taoshuping Tunnel[J]. Modern Tunnelling Technology, 2011, 48(2): 116-119. (in Chinese). doi: 10.3969/j.issn.1009-6582.2011.02.023
    [14] 张再仁. 桃树坪隧道深井降水技术[J]. 铁道建筑技术, 2014(7): 78-80, 100. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJS201407022.htm

    ZHANG Zai-ren. Deep well water drainage technology for Taoshuping Tunnel[J]. Railway Construction Technology, 2014(7): 78-80, 100. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDJS201407022.htm
    [15] 王广宏, 罗利彬. 富水未成岩粉细砂层隧道降水技术研讨[J]. 隧道建设, 2018, 38(增1): 142-147. doi: 10.3973/j.issn.2096-4498.2018.S1.022

    WANG Guang-hong, LUO Li-bin. Study of tunnel dewatering technology in water-rich immature fine silty sand strata[J]. Tunnel Construction, 2018, 38(S1): 142-147. (in Chinese). doi: 10.3973/j.issn.2096-4498.2018.S1.022
    [16] 周伟. 浅谈地铁隧道浅埋暗挖施工降水技术[J]. 中国新技术新产品, 2011(10): 124. doi: 10.3969/j.issn.1673-9957.2011.10.119

    ZHOU Wei. Discussion dewatering technology of the construction of shallow buried excavation in the subway tunnel[J]. China New Technologies and Products, 2011(10): 124. (in Chinese). doi: 10.3969/j.issn.1673-9957.2011.10.119
    [17] 哈吉章, 黄威望, 邵大鹏. 砂卵石地层出水隧道施工综合技术[J]. 现代隧道技术, 2011, 48(2): 128-131, 136. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201102025.htm

    HA Ji-zhang, HUANG Wei-wang, SHAO Da-peng. Comprehensive construction techniques for a tunnel in water-soaked gravel and sand[J]. Modern Tunnelling Technology, 2011, 48(2): 128-131, 136. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201102025.htm
    [18] 杨保旭. 富水砂岩泥岩隧道泄水降水减压施工技术研究[J]. 铁道建筑技术, 2017(9): 66-68, 80. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJS201709018.htm

    YANG Bao-xu. Study on construction technology of sluicing and dewatering decompression in water-rich sandstone and mudstone tunnel[J]. Railway Construction Technology, 2017(9): 66-68, 80. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDJS201709018.htm
    [19] 潘秀明, 汪国锋, 雷军. 等. 真空管井复合降水技术及其在地铁施工中的应用研究[J]. 铁道标准设计, 2018(12): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS200812025.htm

    PAN Xiu-ming, WANG Guo-feng, LEI Jun, et al. True air pipe well recombination water technology and its application in the ground iron engineering research[J]. Railway Stanadrd Design, 2018(12): 58-62. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS200812025.htm
    [20] 黄俊, 张顶立, 陈来生. 富水软弱地层地铁隧道浅埋暗挖施工技术[J]. 岩土工程技术, 2004, 18(6): 295-298. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGJ200406006.htm

    HUANG Jun, ZHANG Ding-li, CHEN Lai-sheng. Shallow tunnel construction technology in watery and weak straum[J]. Geotechnical Engineering Technique, 2004, 18(6): 295-298. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGJ200406006.htm
    [21] 邹翀, 张文新, 李治国, 等. 一种深埋隧道超前降水方法: 中国, 201210140354.7[P]. 2014-04-09.

    ZOU Chong, ZHANG Wen-xin, LI Zhi-guo, et al. An advanced dewatering method for deep buried tunnels: China, 201210140354.7[P]. 2014-04-09. (in Chinese).
    [22] 邹翀, 张文新, 李治国, 等. 一种开挖深埋隧道时洞内综合降水的施工方法: 中国, 201310240988.4[P]. 2015-08-12.
    [23] 武立波, 牛富俊, 林战举. 等. 换填与降排水措施对寒区沟谷软弱路基冻结特征的影响[J]. 交通运输工程学报, 2018, 18(4): 22-33. http://transport.chd.edu.cn/article/id/201804003

    WU Li-bo, NIU Fu-jun, LIN Zhan-ju, et al. Effect of replacing-filling and dewatering-draining measures on frozen characteristics of weak subgrade in cold valley region[J]. Journal of Traffic and Transportation Engineering, 2018, 18(4): 22-33. (in Chinese). http://transport.chd.edu.cn/article/id/201804003
    [24] 曾铃, 刘杰, 史振宁. 坡积土边坡裂隙各向异性特征对雨水入渗过程的影响[J]. 交通运输工程学报, 2018, 18(4): 34-43. http://transport.chd.edu.cn/article/id/201804004

    ZENG Ling, LIU Jie, SHI Zhen-ning. Effect of colluvial soil slope fracture's anisotropy characteristics on rainwater infiltration process[J]. Journal of Traffic and Transportation Engineering, 2018, 18(4): 34-43. (in Chinese). http://transport.chd.edu.cn/article/id/201804004
    [25] 王庆林, 刘晓翔. 桃树坪隧道、胡麻岭隧道第三系富水粉细砂层围岩含水率与稳定性关系浅析[J]. 现代隧道技术, 2012, 49(4): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201204003.htm

    WANG Qing-lin, LIU Xiao-xiang. Analysis of the relationship of water ratio to the stability of surrounding rock in a tertiary water-rich fine sandstone stratum[J]. Modern Tunnelling Technology, 2012, 49(4): 1-5. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201204003.htm
    [26] 高勤运. 兰渝铁路隧道第三系砂岩含水率与围岩稳定性关系研究[J]. 铁道建筑, 2015(3): 62-64. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201503018.htm

    GAO Qin-yun. Relationship study of water content and surrounding rock stability in third series sandstone of Lanyu Railway Tunnel[J]. Railway Engineering, 2015(3): 62-64. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201503018.htm
    [27] 晏长根, 邹群, 许昱, 等. 砂夹层黄土路基水分迁移规律[J]. 交通运输工程学报, 2016, 16(6): 21-29. http://transport.chd.edu.cn/article/id/201606003

    YAN Chang-gen, ZOU Qun, XU Yu, et al. Warer migration rule of loess subgrade with sand interlayers[J]. Journal of Traffic and Transportation Engineering, 2016, 16(6): 21-29. (in Chinese). http://transport.chd.edu.cn/article/id/201606003
    [28] 韩龙武, 蔡汉成, 程佳, 等. 莫斯科—喀山高速铁路沿线季节性冻土冻融特征[J]. 交通运输工程学报, 2018, 18(3): 44-55. http://transport.chd.edu.cn/article/id/201803005

    HAN Long-wu, CAI Han-cheng, CHENG Jia, et al. Freezing and thawing characteristics of seasonal frozen soil along Moscow-Kazan High-Speed Railway[J]. Journal of Traffic and Transportation Engineering, 2018, 18(3): 44-55. (in Chinese). http://transport.chd.edu.cn/article/id/201803005
    [29] 段伟, 蔡国军, 刘松玉, 等. 无黏性土的电阻率CPTU状态参数确定方法及其液化评价[J]. 交通运输工程学报, 2019, 19(2): 59-68. http://transport.chd.edu.cn/article/id/201902006

    DUAN Wei, CAI Guo-jun, LIU Song-yu, et al. Determining method of cohesionless soil state parameter based on resistivity CPTU and liquefaction evaluation[J]. Journal of Traffic and Transportation Engineering, 2019, 19(2): 59-68. (in Chinese). http://transport.chd.edu.cn/article/id/201902006
    [30] 冯忠居, 王溪清, 李孝雄, 等. 强震作用下的砂土液化对桩基力学特性影响[J]. 交通运输工程学报, 2019, 19(1): 71-84. http://transport.chd.edu.cn/article/id/201901008

    FENG Zhong-ju, WANG Xi-qing, LI Xiao-xiong, et al. Effect of sand liquefaction on mechanical properties of pile foundation under strong earthquake[J]. Journal of Traffic and Transportation Engineering, 2019, 19(1): 71-84. (in Chinese). http://transport.chd.edu.cn/article/id/201901008
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  1142
  • HTML全文浏览量:  208
  • PDF下载量:  524
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-04
  • 刊出日期:  2019-10-25

目录

    /

    返回文章
    返回