-
摘要: 采用二维电磁场理论对直线电机气隙磁场的纵向分量和垂向分量进行求解, 得到了电机牵引力和法向力的解析表达式, 利用直线电机试验台对解析计算方法进行检验, 对比6~18 Hz恒滑差频率下牵引力和法向力随速度的变化; 建立了三悬浮架单节磁浮车辆动力学模型, 仿真对比了车体和悬浮架分别在1、3、5、8 kN冲击力下的振动响应; 计算了单节中低速磁浮车辆牵引特性, 分析了不同滑差频率对车辆牵引性能的影响; 综合考虑电机法向力对悬浮系统的影响和车辆的牵引需求, 提出了变滑差频率控制策略。研究结果表明: 电机牵引特性一般包括恒力区和恒功区, 恒力区初级电流最大值为390 A, 恒功区电压最大值为212 V, 恒力区牵引力变化较小, 恒功区牵引力衰减较快; 滑差频率越小, 电机起动牵引力和法向力越大, 恒力区越短, 反之亦然; 法向冲击力小于8 kN时车辆平稳性指标等级均达到优秀, 但为了减小悬浮系统的负担, 电机法向力应越小越好; 较低的滑差频率使车辆低速段牵引性能更强, 但采用较高的滑差频率有利于提高全速度范围的牵引性能; 在变滑差频率控制策略中起动滑差频率的选择综合考虑车辆的牵引性能和悬浮能力, 速度达到恒功转折点后滑差频率逐渐增大, 该策略使电机恒力区牵引力适中, 恒功区牵引力始终为电机所能发挥的最大值。Abstract: The longitudinal and vertical components of air gap magnetic field of linear induction motor(LIM) were solved by the two-dimensional electromagnetic field theory, and the analytical expressions of traction force and normal force of LIM were obtained. The analytical calculation method was tested by using the test bench for LIM, and the variations of traction force and normal force with speed under the constant slip frequency range of 6-18 Hz were compared. The dynamics model of a single maglev vehicle with three levitation frames was built. The vibration responses of car body and levitation frame under the impact forces of 1, 3, 5 and 8 kN were simulated and compared. The traction performance of a single middle-low speed maglev vehicle was calculated, the influence of slip frequency on the traction performance of vehicle was analyzed. Considering the influence of normal force on the levitation system and the traction demand of vehicle comprehensively, the variable slip frequency control(VSFC) strategy was proposed. Research result shows that the traction characteristic of LIM generally contains the constant force zone(CFZ) and constant power zone(CPZ). The primary current in the CFZ reaches a maximum of 390 A, and the voltage in the CPZ reaches a maximum of 212 V. The traction force in the CFZ changes little, and decreases rapidly in the CPZ. The smaller the slip frequency is, the greater the starting traction force and normal force of the motor are, and the shorter the CFZ is. When the normal impact force is less than 8 kN, the vehicle stability index grades are all excellent. However, in order to reduce the load of levitation system, the normal force of LIM should be as small as possible. The traction performance of vehicle in the low speed zone under lower slip frequency is better than that under higher slip frequency, but the higher slip frequency is beneficial to improve the traction performance in the full speed range. In the VSFC strategy, the selection of starting slip frequency takes into account the traction performance and levitation ability of vehicle, and the slip frequency gradually increases after the speed reaches the turning point of constant power. Under the VSFC strategy, the traction force is moderate in the CFZ, and is always the maximum value that the motor can exert in the CPZ.
-
表 1 直线电机参数
Table 1. Parameters of LIM
参数 数值 参数 数值 电机长度/mm 2 850 电机容量/(kV·A) 248 电机宽度/mm 220 额定相电压/V 212 极数 12 额定相电流/A 390 极距/mm 219.6 气隙/mm 11 相数 3 滑差频率/Hz 8 每极每相槽数 3 单相有效串联匝数 72 次级板电阻率/(Ω·m) 2.83×10-8 次级板厚/mm 4 表 2 动力学模型参数
Table 2. Parameters of dynamics model
参数 数值 参数 数值 车体长度/m 10 纵梁长度/m 2.8 车体高度/m 2.5 纵梁宽度/m 0.4 车体宽度/m 2.8 纵梁高度/m 0.3 整车质量/t 18 单个悬浮架及吊装质量/t 2 空簧间距/m 3 悬浮模块横向距离/m 1.86 额定气隙/mm 8 悬浮架个数 3 额定电流/A 30 直线电机台数 6 表 3 车辆平稳性指标
Table 3. Stability indexes of vehicle
法向冲击力/kN 1 3 5 8 优秀指标 ≤2.5 ≤2.5 ≤2.5 ≤2.5 平稳性指标 0.619 0.864 1.012 1.174 -
[1] LEE H W, KIM K C, LEE J. Review of maglev train technologies[J]. IEEE Transactions on Magnetics, 2006, 42(7): 1917-1925. doi: 10.1109/TMAG.2006.875842 [2] YAN Lu-guang. Progress of the maglev transportation in China[J]. IEEE Transactions on Applied Superconductivity, 2006, 16(2): 1138-1141. doi: 10.1109/TASC.2006.871345 [3] BAZGHALEH A Z, NAGHASHAN M R, MESHKATODDINI M R. Optimum design of single-sided linear induction motors for improved motor performance[J]. IEEE Transactions on Magnetics, 2010, 46(11): 3939-3947. doi: 10.1109/TMAG.2010.2062528 [4] SHIRI A, SHOULAIE A. Design optimization and analysis of single-sided linear induction motor, considering all phenomena[J]. IEEE Transactions on Energy Conversion, 2012, 27(2): 516-525. doi: 10.1109/TEC.2012.2190416 [5] NONAKA S, HIGUCHI T. Design of single-sided linear induction motors for urban transit[J]. IEEE Transactions on Vehicular Technology, 1988, 37(3): 167-173. doi: 10.1109/25.16543 [6] 宫金林, 王秀和. 基于多目标有效全局优化算法的直线感应电动机优化设计[J]. 电工技术学报, 2015, 30(24): 32-37. doi: 10.3969/j.issn.1000-6753.2015.24.005GONG Jin-lin, WANG Xiu-he. Optimal design of a linear induction motor using multi-objective efficient global optimization[J]. Transactions of China Electrotechnical Society, 2015, 30(24): 32-37. (in Chinese). doi: 10.3969/j.issn.1000-6753.2015.24.005 [7] ISFAHANI A H, EBRAHIMI B M, LESANI H. Design optimization of a low-speed single-sided linear induction motor for improved efficiency and power factor[J]. IEEE Transactions on Magnetics, 2008, 44(2): 266-272. doi: 10.1109/TMAG.2007.912646 [8] 吕刚, 曾迪晖, 周桐, 等. 初级横向偏移时直线感应电机磁场与推力的有限元分析[J]. 电机与控制学报, 2016, 20(4): 64-68, 77. https://www.cnki.com.cn/Article/CJFDTOTAL-DJKZ201604010.htmLYU Gang, ZENG Di-hui, ZHOU Tong, et al. Magnetic field and thrust analysis for linear induction motor with lateral displacement[J]. Electric Machines and Control, 2016, 20(4): 64-68, 77. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DJKZ201604010.htm [9] FAIZ J, JAFARI H. Accurate modeling of single-sided linear induction motor considers end effect and equivalent thickness[J]. IEEE Transactions on Magnetics, 2000, 36(5): 3785-3790. doi: 10.1109/20.908365 [10] PAI R M, BOLDEA I, NASAR S A. A complete equivalent circuit of a linear induction motor with sheet secondary[J]. IEEE Transactions on Magnetics, 1988, 24(1): 639-654. doi: 10.1109/20.43997 [11] 徐伟, 李耀华, 孙广生, 等. 基于绕组函数法的大功率单边直线感应电机牵引特性研究[J]. 中国电机工程学报, 2008, 28(33): 54-60. doi: 10.3321/j.issn:0258-8013.2008.33.010XU Wei, LI Yao-hua, SUN Guang-sheng, et al. Tractive performance research of high power single linear induction motor based on winding function method[J]. Proceedings of the CSEE, 2008, 28(33): 54-60. (in Chinese). doi: 10.3321/j.issn:0258-8013.2008.33.010 [12] XU Wei, SUN Guang-yong, WEN Gui-lin, et al. Equivalent circuit derivation and performance analysis of a single-sided linear induction motor based on the winding function theory[J]. IEEE Transactions on Vehicular Technology, 2012, 61(4): 1515-1525. doi: 10.1109/TVT.2012.2183626 [13] 徐伟, 李耀华, 孙广生, 等. 短初级单边直线感应电机新型等效电路[J]. 中国电机工程学报, 2009, 29(9): 80-86. doi: 10.3321/j.issn:0258-8013.2009.09.013XU Wei, LI Yao-hua, SUN Guang-sheng, et al. New equivalent circuits of short primary single-sided linear induction motor[J]. Proceedings of the CSEE, 2009, 29(9): 80-86. (in Chinese). doi: 10.3321/j.issn:0258-8013.2009.09.013 [14] XU Wei, ZHU Jian-guo, GUO You-guang, et al. Equivalent circuits for single-sided linear induction motors[C]//IEEE. 2009 IEEE Energy Conversion Congress and Exposition. New York: IEEE, 2009: 1288-1295. [15] XU Wei, ZHU Jian-guo, ZHANG Yong-chang, et al. An improved equivalent circuit model of a single-sided linear induction motor[J]. IEEE Transactions on Vehicular Technology, 2010, 59(5): 2277-2289. doi: 10.1109/TVT.2010.2043862 [16] 卢琴芬, 方攸同, 叶云岳. 大气隙直线感应电机的力特性分析[J]. 中国电机工程学报, 2005, 25(21): 132-136. doi: 10.3321/j.issn:0258-8013.2005.21.024LU Qin-fen, FANG You-tong, YE Yun-yue. A study on force characteristic of large airgap linear induction motor[J]. Proceedings of the CSEE, 2005, 25(21): 132-136. (in Chinese). doi: 10.3321/j.issn:0258-8013.2005.21.024 [17] 龙遐令. 直线感应电动机等值电路的通用推导方法[J]. 电工技术学报, 1993(4): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS199304011.htmLONG Xia-ling. A general method driving the equivalent circuit of linear induction motor[J]. Transactions of China Electrotechnical Society, 1993(4): 55-60. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS199304011.htm [18] ADAMIAK K, ANANTHASIVAM K, DAWSON G E, et al. The causes and consequences of phase unbalance in single-sided linear induction motors[J]. IEEE Transactions on Magnetics, 1988, 24(6): 3223-3233. doi: 10.1109/20.92381 [19] 张敏, 罗世辉, 马卫华. 接线相位差对直线电机牵引性能的影响[J]. 中国科学: 技术科学, 2019, 62: 1-10.ZHANG Min, LUO Shi-hui, MA Wei-hua. Influence of connection phase difference on the traction performance of linear induction motor[J]. Scientia Sinica: Technologica, 2019, 62: 1-10. (in Chinese). [20] 凌季平, 高沁翔, 郭文杰. 直线感应电机模型分析与转差频率控制研究[J]. 机车电传动, 2006(6): 15-17, 32. doi: 10.3969/j.issn.1000-128X.2006.06.005LING Ji-ping, GAO Qin-xiang, GUO Wen-jie. Research on model analysis and slip frequency control of linear induction motor[J]. Electric Drive for Locomotives, 2006(6): 15-17, 32. (in Chinese). doi: 10.3969/j.issn.1000-128X.2006.06.005 [21] MUNOZ-GARCIA A, LIPO T A, NOVOTNY D W. A new induction motor V/f control method capable of high-performance regulation at low speeds[J]. IEEE Transactions on Industry Applications, 1998, 34(4): 813-821. doi: 10.1109/28.703982 [22] CONSOLI A, SCARCELLA G, TESTA A. Slip-frequency detection for indirect field-oriented control drives[J]. IEEE Transactions on Industry Applications, 2004, 40(1): 194-201. doi: 10.1109/TIA.2003.821804 [23] SEO H, LIM J, CHOE G H, et al. Algorithm of linear induction motor control for low normal force of magnetic levitation train propulsion system[J]. IEEE Transactions on Magnetics, 2018, 54(11): 1-4. [24] 刘希军, 张昆仑, 陈殷. 单边直线感应电机最优滑差频率控制研究[J]. 系统仿真学报, 2015, 27(4): 859-865. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201504027.htmLIU Xi-jun, ZHANG Kun-lun, CHEN Yin. Research on optimal slip frequency control of single-sided linear induction motor[J]. Journal of System Simulation, 2015, 27(4): 859-865. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201504027.htm [25] 邓江明, 陈特放, 唐建湘, 等. 单边直线感应电机动态最大推力输出的滑差频率优化控制[J]. 中国电机工程学报, 2013, 33(12): 123-130. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201312016.htmDENG Jiang-ming, CHEN Te-fang, TANG Jian-xiang, et al. Optimum slip frequency control of maglev single-sided linear induction motors to maximum dynamic thrust[J]. Proceedings of the CSEE, 2013, 33(12): 123-130. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201312016.htm [26] 吕刚, 范瑜, 李国国, 等. 基于解耦策略的直线感应牵引电机法向力自适应最优控制[J]. 中国电机工程学报, 2009, 29(9): 73-79. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200909012.htmLYU Gang, FAN Yu, LI Guo-guo, et al. Normal force adaptive optimal control for linear induction motor based on decoupling strategy[J]. Proceedings of the CSEE, 2009, 29(9): 73-79. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200909012.htm [27] 张红梅, 李璐, 吴峻, 等. 直线感应电机的矢量控制建模与仿真[J]. 微特电机, 2004, 32(9): 29-31, 34. doi: 10.3969/j.issn.1004-7018.2004.09.008ZHANG Hong-mei, LI Lu, WU Jun, et al. Modeling and simulation of vector control system for linear induction motor[J]. Small and Special Electrical Machines, 2004, 32(9): 29-31, 34. (in Chinese). doi: 10.3969/j.issn.1004-7018.2004.09.008 [28] 任晋旗, 李耀华, 王珂. 动态边端效应补偿的直线感应电机磁场定向控制[J]. 电工技术学报, 2007, 22(12): 61-65. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS200712010.htmREN Jin-qi, LI Yao-hua, WANG Ke. Indirect field oriented control of linear induction with end effect compensation[J]. Transactions of China Electrotechnical Society, 2007, 22(12): 61-65. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS200712010.htm [29] OVERBOOM T T, SMEETS J P C, JANSEN J W, et al. Decoupled control of thrust and normal force in a double-layer single-sided linear induction motor[J]. Mechatronics, 2013, 23(2): 213-221. doi: 10.1016/j.mechatronics.2012.06.005 [30] 矫岩峻, 文艳晖, 刘少克. 中低速磁浮列车上坡牵引策略优化[J]. 机车电传动, 2016(2): 37-39, 43. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201602012.htmJIAO Yan-jun, WEN Yan-hui, LIU Shao-ke. Uphill traction strategy optimization of middle/low-speed maglev train[J]. Electric Drive for Locomotives, 2016(2): 37-39, 43. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201602012.htm