留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑UIC强度准则的轨道车轮辐板渐进结构拓扑优化方法

郑晓明 文永蓬 尚慧琳 刘跃杰

郑晓明, 文永蓬, 尚慧琳, 刘跃杰. 考虑UIC强度准则的轨道车轮辐板渐进结构拓扑优化方法[J]. 交通运输工程学报, 2019, 19(5): 84-95. doi: 10.19818/j.cnki.1671-1637.2019.05.009
引用本文: 郑晓明, 文永蓬, 尚慧琳, 刘跃杰. 考虑UIC强度准则的轨道车轮辐板渐进结构拓扑优化方法[J]. 交通运输工程学报, 2019, 19(5): 84-95. doi: 10.19818/j.cnki.1671-1637.2019.05.009
ZHENG Xiao-ming, WEN Yong-peng, SHANG Hui-lin, LIU Yue-jie. Evolutionary structure topology optimization method of rail wheel web plate considering UIC strength criterion[J]. Journal of Traffic and Transportation Engineering, 2019, 19(5): 84-95. doi: 10.19818/j.cnki.1671-1637.2019.05.009
Citation: ZHENG Xiao-ming, WEN Yong-peng, SHANG Hui-lin, LIU Yue-jie. Evolutionary structure topology optimization method of rail wheel web plate considering UIC strength criterion[J]. Journal of Traffic and Transportation Engineering, 2019, 19(5): 84-95. doi: 10.19818/j.cnki.1671-1637.2019.05.009

考虑UIC强度准则的轨道车轮辐板渐进结构拓扑优化方法

doi: 10.19818/j.cnki.1671-1637.2019.05.009
基金项目: 

国家自然科学基金项目 11472176

上海市自然科学基金项目 15ZR1419200

详细信息
    作者简介:

    郑晓明(1994-), 男, 河南登封人, 上海工程技术大学工学硕士研究生, 从事轨道车轮结构优化设计方法研究

    文永蓬:WEN Yong-peng(1979-), male, associate professor, PhD, yp_wen@163.com

    通讯作者:

    文永蓬(1979-), 男, 江西永新人, 上海工程技术大学副教授, 工学博士

  • 中图分类号: U270.2

Evolutionary structure topology optimization method of rail wheel web plate considering UIC strength criterion

More Information
  • 摘要: 为了提高轨道车轮的结构性能, 利用渐进结构拓扑优化方法(ESO)建立了轨道车轮的结构优化模型; 以双S型轨道车轮为设计蓝本, 分析了轨道车轮的辐板设计域, 提出了轨道车轮在多工况作用下的渐进结构拓扑优化方法; 介绍了利用渐进结构拓扑优化方法实现结构应力均匀化的优化思路; 根据《整体车轮技术检验》(UIC 510-5:2003)标准, 分别考虑了轨道车轮在直线工况、曲线工况和道岔通过工况, 不仅获得这3种典型工况共同作用下的拓扑优化结构, 而且还获得了3种典型工况依次作用下的6种拓扑结构; 对比了优化前后车轮辐板的应力, 并利用有限元工具验证了优化后车轮的辐板应力特性, 证明渐进结构拓扑优化方法的正确性和有效性。研究结果表明: 利用渐进结构拓扑优化方法对轨道车轮的拓扑优化是适用的; 在车轮质量不增加的前提下, 优化后车轮辐板的厚度增加且不等厚, 有效地减小应力集中, 降低结构应力; 对比原双S型车轮, 优化后6种车轮模型的结构性能均有所提升, 分别提高了16.6%、20.7%、22.5%、21.3%、20.1%和19.5%, 其中, 方案3的优化车轮在3种工况下辐板处的最大结构应力分别降低了4.0%、14.5%和6.7%。研究有助于轨道车轮结构强度的提高, 并对多工况耦合作用下轨道车轮结构优化具有重要的参考价值。

     

  • 图  1  双S型车轮断面模型

    Figure  1.  Double S-shaped wheel's section model

    图  2  车轮载荷作用力方向和位置(单位: mm)

    Figure  2.  Wheel load force directions and positions (unit: mm)

    图  3  车轮拓扑优化的初始设计模型

    Figure  3.  Initial design model for wheel topology optimization

    图  4  取交集的ESO多工况优化方法流程

    Figure  4.  Flow of ESO multi-working condition optimization method for intersection

    图  5  取交集的ESO多工况优化过程

    Figure  5.  ESO multi-working condition optimization process for intersection

    图  6  三种工况下车轮初始设计模型的单元应力分布

    Figure  6.  Element stress distributions of wheel initial design model under three working conditions

    图  7  依次循环ESO多工况优化流程

    Figure  7.  ESO multi-working condition optimization flow with sequential cycles

    图  8  六种方案的优化结果

    Figure  8.  Optimization results of six schemes

    图  9  六种优化结果在工况2下的单元应力分布

    Figure  9.  Element stress distributions of six kinds of optimization results under working condition 2

    图  10  体积比曲线

    Figure  10.  Volume ratio curves

    图  11  优化模型B的车轮优化过程

    Figure  11.  Wheel optimization process of optimization model B

    图  12  优化前后车轮辐板形状对比

    Figure  12.  Comparison of wheel web plate shapes before and after optimization

    图  13  优化模型B的有限元模型

    Figure  13.  Finite element model of optimization model B

    图  14  工况2下车轮优化前后结构应力分布

    Figure  14.  Structural stress distributions before and after wheel optimization under working condition 2

    表  1  轨道车轮参数及材料属性

    Table  1.   Rail wheel parameters and material properties

    类别 名称 数值
    车轮参数 轴质量/t 16
    车轮质量/kg 288
    车轮直径/mm 840
    材料属性 泊松比 0.3
    弹性模量/MPa 2.0×105
    密度/(kg·m-3) 7 800
    强度极限/MPa 900
    屈服极限/MPa 580
    许用应力/MPa 352
    疲劳极限/MPa 315
    下载: 导出CSV

    表  2  车轮载荷工况

    Table  2.   Wheel load conditions

    工况 Fyi Fzi
    1 0 1.25pg/2
    2 -0.7pg/2 1.25pg/2
    3 0.42pg/2 1.25pg/2
    下载: 导出CSV

    表  3  ESO多工况的依次循环优化方案

    Table  3.   ESO sequential cycles optimization schemes under multi-working conditions

    优化方案 工况顺序
    1 工况1、工况2、工况3
    2 工况1、工况3、工况2
    3 工况2、工况1、工况3
    4 工况2、工况3、工况1
    5 工况3、工况1、工况2
    6 工况3、工况2、工况1
    下载: 导出CSV

    表  4  优化结果对比

    Table  4.   Comparison of optimization results

    指标 单元应力/MPa 性能指标 效果/%
    工况1 工况2 工况3
    模型A 61.37 257.62 187.54 2.02 19.5
    优化方案 1 61.37 263.76 179.47 1.97 16.6
    2 61.37 256.12 183.79 2.04 20.7
    3 61.37 251.75 184.07 2.07 22.5
    4 61.37 253.90 184.67 2.05 21.3
    5 61.37 256.78 185.29 2.03 20.1
    6 61.37 257.25 174.89 2.02 19.5
    原始 77.17 307.60 204.94 1.69
    下载: 导出CSV

    表  5  最大结构应力对比

    Table  5.   Comparison of maximum structural stresses

    类型 工况1 工况2 工况3
    双S型车轮 50 124 90
    优化模型 A 38 197 132
    B 48 106 84
    下载: 导出CSV
  • [1] 文永蓬, 徐小峻, 尚慧琳, 等. 考虑热力耦合的轨道车辆车轮建模与仿真[J]. 交通运输工程学报, 2016, 16(5): 30-41. doi: 10.3969/j.issn.1671-1637.2016.05.004

    WEN Yong-peng, XU Xiao-jun, SHANG Hui-lin, et al. Modeling and simulation of railway vehicle wheel considering thermo-mechanical coupling[J]. Journal of Traffic and Transportation Engineering, 2016, 16(5): 30-41. (in Chinese). doi: 10.3969/j.issn.1671-1637.2016.05.004
    [2] 文永蓬, 尚慧琳, 董其炜, 等. 城市轨道车辆车轮轮缘磨耗分析[J]. 科技导报, 2013, 31(26): 40-43. doi: 10.3981/j.issn.1000-7857.2013.26.005

    WEN Yong-peng, SHANG Hui-lin, DONG Qi-wei, et al. Wear of wheel flange of urban rail vehicle[J]. Science and Technology Review, 2013, 31(26): 40-43. (in Chinese). doi: 10.3981/j.issn.1000-7857.2013.26.005
    [3] KUMAR V, SINGH G, SAXENA R K. Investigation on fatigue life of rail-wheel assembly using finite element analysis[C]∥IEEE. IEEE International Conference on Intelligent Rail Transportation. New York: IEEE, 2016: 1-8.
    [4] 张廷秀, 陈换过, 蔡丽, 等. CRH5型高速动车组车轮轮辋疲劳寿命分析[J]. 浙江理工大学学报(自然科学版), 2015, 33(6): 824-828. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJSG201511017.htm

    ZHANG Ting-xiu, CHEN Huan-guo, CAI Li, et al. Fatigue life analysis for wheel rim of CRH5 motor train unit[J]. Journal of Zhejiang Sci-Tech University (Natural Sciences), 2015, 33(6): 824-828. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZJSG201511017.htm
    [5] ZHANG Guan-zhen, REN Rui-ming. Study on typical failure forms and causes of high-speed railway wheels[J]. Engineering Failure Analysis, 2019, 105: 1287-1295. doi: 10.1016/j.engfailanal.2019.07.063
    [6] ZENG Dong-fang, LU Lian-tao, GONG Yan-hua, et al. Optimization of strength and toughness of railway wheel steel by alloy design[J]. Materials and Design, 2016, 92(25): 998-1006.
    [7] WU Si, LI Xiu-cheng, ZHANG Juan, et al. Microstructural refinement and mechanical properties of high-speed niobium-microalloyed railway wheel steel[J]. Steel Research International, 2015, 86(7): 775-784. doi: 10.1002/srin.201400236
    [8] 蒋鹏飞, 米彩盈. 组合材料车轮结构强度分析[J]. 机车电传动, 2016(4): 59-62. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201604019.htm

    JIANG Peng-fei, MI Cai-ying. Strength analysis of composite material wheels[J]. Electric Drive for Locomotives, 2016(4): 59-62. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201604019.htm
    [9] 文永蓬, 郑晓明, 尚慧琳, 等. 考虑不同辐板的城市轨道车轮热力耦合特性研究[J]. 机械强度, 2018, 40(1): 165-170. https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201801028.htm

    WEN Yong-peng, ZHENG Xiao-ming, SHANG Hui-lin, et al. Study on the thermal-mechanical coupling for different plate urban railway vehicle wheels[J]. Journal of Mechanical Strength, 2018, 40(1): 165-170. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201801028.htm
    [10] 文永蓬, 周伟浩, 徐小峻, 等. 考虑热力耦合的轨道车轮辐板参数优化研究[J]. 铁道科学与工程学报, 2016, 13(10): 2042-2050. doi: 10.3969/j.issn.1672-7029.2016.10.023

    WEN Yong-peng, ZHOU Wei-hao, XU Xiao-jun, et al. Study on parameter optimization for the rail wheel considering thermal-mechanical coupling[J]. Journal of Railway Science and Engineering, 2016, 13(10): 2042-2050. (in Chinese). doi: 10.3969/j.issn.1672-7029.2016.10.023
    [11] 杨广雪, 张燕, 李强. 辐板型式对车轮强度和声辐射性能影响的对比分析[J]. 铁道学报, 2016, 38(12): 34-40. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201612006.htm

    YANG Guang-xue, ZHANG Yan, LI Qiang. Comparative analysis of effects of web shape on strength and sound radiation characteristics of railway wheels[J]. Journal of the China Railway Society, 2016, 38(12): 34-40. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201612006.htm
    [12] SEO J W, KWON S J, JUN H K, et al. Effects of residual stress and shape of web plate on the fatigue life of railway wheels[J]. Engineering Failure Analysis, 2009, 16(7): 2493-2507. doi: 10.1016/j.engfailanal.2009.04.013
    [13] 孙思远, 张开林, 张雨, 等. 热-机械耦合作用下车轮应力分析与结构优化设计[J]. 铁道机车与动车, 2018(2): 26-30. https://www.cnki.com.cn/Article/CJFDTOTAL-LRJX201802007.htm

    SUN Si-yuan, ZHANG Kai-lin, ZHANG Yu, et al. Wheel stress analysis and structure optimization design under the thermal-mechanical interaction[J]. Railway Locomotive and Motor Car, 2018(2): 26-30. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LRJX201802007.htm
    [14] 徐传来, 米彩盈, 周仲荣. 基于APDL语言的车轮参数化形状优化[J]. 铁道学报, 2011, 33(11): 23-27. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201111007.htm

    XU Chuan-lai, MI Cai-ying, ZHOU Zhong-rong. Wheel shape and parameter optimization based on APDL language[J]. Journal of the China Railway Society, 2011, 33(11): 23-27. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201111007.htm
    [15] NIELSEN J C O, FREDÖ C R. Multi-disciplinary optimization of railway wheels[J]. Journal of Sound and Vibration, 2006, 293(3-5): 510-521. doi: 10.1016/j.jsv.2005.08.063
    [16] 闫东淼, 宋永增, 侯瑞峰. 公铁两用车转向架车轮结构优化设计[J]. 铁道机车车辆, 2017, 37(2): 34-36, 41. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201702009.htm

    YAN Dong-miao, SONG Yong-zeng, HOU Rui-feng. Optimization design of wheels for bogie of railroad[J]. Railway Locomotive and Car, 2017, 37(2): 34-36, 41. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201702009.htm
    [17] AKAMA M, SASAKURA M, FURUNO K. Development of low-stress and low-noise lightweight railway wheel[J]. Transactions of the Japan Society of Mechanical Engineers Series A, 2007, 73: 677-685.
    [18] LEE S, LEE D H, LEE J. Integrated shape-morphing and metamodel-based optimization of railway wheel web considering thermo-mechanical loads[J]. Structural and Multidisciplinary Optimization, 2019, 60(1): 315-330.
    [19] HUANG Xiao-qing, WANG Xiu-li, SHEN Xiao-hui, et al. Effect of the shape of railway wheel plate on its stresses and fatigue evaluation[J]. Engineering Failure Analysis, 2019, 97: 718-726.
    [20] ATAI A A, AZARLU E. Multi-objective optimization of web profile of railway wheel using bi-directional evolutionary structural optimization[J]. Journal of Computational Applied Mechanics, 2017, 48(2): 307-318.
    [21] XIE Y M, STEVEN G P. A simple evolutionary procedure for structural optimization[J]. Computers and Structures, 1993, 49(5): 885-896.
    [22] HUANG Xiao-dong, XIE Yi-min. A further review of ESO type methods for topology optimization[J]. Structural and Multidisciplinary Optimization, 2010, 41(5): 671-683.
    [23] 谢亿民, 黄晓东, 左志豪, 等. 渐进结构优化法(ESO)和双向渐进结构优化法(BESO)的近期发展[J]. 力学进展, 2011, 41(4): 462-471. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201104008.htm

    XIE Yi-min, HUANG Xiao-dong, ZUO Zhi-hao, et al. Recent developments in evolutionary structural optimization (ESO) and bidirectional evolutionary structural optimization (BESO) methods[J]. Advances in Mechanics, 2011, 41(4): 462-471. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201104008.htm
    [24] 荣见华, 姜节胜, 胡德文, 等. 基于应力及其灵敏度的结构拓扑渐进优化方法[J]. 力学学报, 2003, 35(5): 584-591. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB200305009.htm

    RONG Jian-hua, JIANG Jie-sheng, HU De-wen, et al. A structural topology evolutionary optimization method based on stresses and their sensitivity[J]. Chinese Journal of Theoretical and Applied Mechanics, 2003, 35(5): 584-591. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB200305009.htm
    [25] 陈小明, 赖喜德, 唐健, 等. ESO在2-D结构模型优化中的改进及应用[J]. 机械强度, 2016, 38(5): 984-989. https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201605015.htm

    CHEN Xiao-ming, LAI Xi-de, TANG Jian, et al. Improvement of evolutionary structural optimization method for 2-D model[J]. Journal of Mechanical Strength, 2016, 38(5): 984-989. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201605015.htm
    [26] 罗静, 张大可, 李海军, 等. 基于一种动态删除率的ESO方法[J]. 计算力学学报, 2015, 32(2): 274-279. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201502022.htm

    LUO Jing, ZHANG Da-ke, LI Hai-jun, et al. ESO method based on a kind of dynamic deletion rate[J]. Chinese Journal of Computational Mechanics, 2015, 32(2): 274-279. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201502022.htm
    [27] XIA Liang, XIA Qi, HUANG Xiao-dong, et al. Bi-directional evolutionary structural optimization on advanced structures and materials: a comprehensive review[J]. Archives of Computational Methods in Engineering, 2018, 25(2): 437-478.
    [28] XIE Yi-min, ZUO Zhi-hao, HUANG Xiao-dong, et al. Application of topological optimisation technology to bridge design[J]. Structural Engineering International, 2014, 24(2): 185-191.
    [29] 谢亿民, 杨晓英, STEVEN G P, 等. 渐进结构优化法的基本理论及应用[J]. 工程力学, 1999, 16(6): 70-81. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX199906008.htm

    XIE Yi-min, YANG Xiao-ying, STEVEN G P, et al. The theory and application of evolutionary structural optimisation method[J]. Engineering Mechanics, 1999, 16(6): 70-81. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX199906008.htm
    [30] 林成金. 连续体多工况结构拓扑优化研究[D]. 重庆: 重庆大学, 2015.

    LIN Cheng-jin. Research on structural topology optimization under multiple loading cases[D]. Chongqing: Chongqing University, 2015. (in Chinese).
  • 加载中
图(14) / 表(5)
计量
  • 文章访问数:  1122
  • HTML全文浏览量:  292
  • PDF下载量:  488
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-16
  • 刊出日期:  2019-10-25

目录

    /

    返回文章
    返回