留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强降雨环境下高速列车空气动力学性能

于梦阁 李田 张骞 刘加利

于梦阁, 李田, 张骞, 刘加利. 强降雨环境下高速列车空气动力学性能[J]. 交通运输工程学报, 2019, 19(5): 96-105. doi: 10.19818/j.cnki.1671-1637.2019.05.010
引用本文: 于梦阁, 李田, 张骞, 刘加利. 强降雨环境下高速列车空气动力学性能[J]. 交通运输工程学报, 2019, 19(5): 96-105. doi: 10.19818/j.cnki.1671-1637.2019.05.010
YU Meng-ge, LI Tian, ZHANG Qian, LIU Jia-li. Aerodynamic performance of high-speed train under heavy rain condition[J]. Journal of Traffic and Transportation Engineering, 2019, 19(5): 96-105. doi: 10.19818/j.cnki.1671-1637.2019.05.010
Citation: YU Meng-ge, LI Tian, ZHANG Qian, LIU Jia-li. Aerodynamic performance of high-speed train under heavy rain condition[J]. Journal of Traffic and Transportation Engineering, 2019, 19(5): 96-105. doi: 10.19818/j.cnki.1671-1637.2019.05.010

强降雨环境下高速列车空气动力学性能

doi: 10.19818/j.cnki.1671-1637.2019.05.010
基金项目: 

国家自然科学基金项目 51705267

国家自然科学基金项目 51605397

中国博士后科学基金项目 2018M630750

山东省高等学校科技计划项目 J18KA048

详细信息
    作者简介:

    于梦阁(1985-), 女, 山东烟台人, 青岛大学副教授, 工学博士, 从事列车空气动力学研究

  • 中图分类号: U270.1

Aerodynamic performance of high-speed train under heavy rain condition

More Information
  • 摘要: 为研究强降雨对高速列车空气动力学性能的影响, 利用Euler-Lagrange方法建立了强降雨环境下高速列车空气动力学计算模型; 空气建模为连续相, 采用Euler方法描述, 雨滴建模为离散相, 采用Lagrange方法描述, 并采用相间耦合方法对降雨环境进行模拟; 分别开展列车气动性能计算及雨滴降落仿真, 并与试验数据进行对比, 验证计算方法的准确性; 数值仿真了强降雨环境下高速列车的流场结构和气动特性。计算结果表明: 随着降雨强度的增加, 在雨滴的冲击作用下, 流线型头型前端区域的正压逐渐增大, 流线型头型后端区域的负压逐渐减小, 从而导致头车气动阻力增大; 降雨强度对高速列车头车气动阻力系数的影响较为显著, 而对气动升力系数的影响较小; 与无降雨环境相比, 当降雨强度为100~500 mm·h-1时, 200 km·h-1车速下的气动阻力系数增加0.004 0~0.020 4, 气动阻力增加85~432 N, 增大率为2.64%~13.46%;300 km·h-1车速下的气动阻力系数增加0.002 7~0.013 7, 气动阻力增加129~652 N, 增大率为1.78%~9.05%;400 km·h-1车速下的气动阻力系数增加0.002 3~0.009 8, 气动阻力增加195~829 N, 增大率为1.52%~6.49%, 因此, 不同车速下, 气动阻力系数随着降雨强度的增加而增大, 且与降雨强度近似呈线性关系; 当车速为300 km·h-1, 降雨强度为100 mm·h-1, 雨滴粒径由2 mm增加为4 mm时, 气动阻力系数由0.152 0增大到0.154 9, 气动阻力增加138 N, 增大率为1.91%, 因此, 高速列车气动阻力系数随着雨滴粒径的增加而增大, 且与雨滴粒径近似呈线性关系。

     

  • 图  1  计算区域

    Figure  1.  Computational domain

    图  2  计算网格

    Figure  2.  Computational meshes

    图  3  气动阻力系数曲线

    Figure  3.  Curve of aerodynamic drag coefficient

    图  4  雨滴运动轨迹

    Figure  4.  Motion tracks of raindrops

    图  5  不同降雨强度下流线型头型压力分布

    Figure  5.  Pressure distributions on streamlined head under different rainfall intensities

    图  6  6气动力系数随降雨强度的变化规律

    Figure  6.  Variation rules of aerodynamic force coefficients with rainfall intensity

    图  7  气动阻力(系数)增量随降雨强度的变化规律

    Figure  7.  Variation rules of aerodynamic drag (coefficient) increment with rainfall intensity

    图  8  气动阻力系数随雨滴粒径的变化规律

    Figure  8.  Variation rules of aerodynamic drag coefficient with raindrop diameter

    表  1  雨滴降落末速度对比

    Table  1.   Comparison of terminal velocities of raindrop

    雨滴粒径/mm 0.5 1.0 1.5 2.0 2.5 3.0
    试验值/(m·s-1) 2.00 3.88 5.39 6.55 7.41 8.05
    计算值/(m·s-1) 2.06 3.92 5.48 6.74 7.75 8.63
    差值/(m·s-1) 0.06 0.04 0.09 0.19 0.34 0.58
    下载: 导出CSV
  • [1] BAKER C. The flow around high speed trains[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(6/7): 277-298.
    [2] WANG Ming, LI Xiao-zhen, XIAO Jun, et al. An experimental analysis of the aerodynamic characteristics of a high-speed train on a bridge under crosswinds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 177: 92-100. doi: 10.1016/j.jweia.2018.03.021
    [3] WEINMAN K A, FRAGNER M, DEITERDING R, et al. Assessment of the mesh refinement influence on the computed flow-fields about a model train in comparison with wind tunnel measurements[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 179: 102-117. doi: 10.1016/j.jweia.2018.05.005
    [4] YAN Nai-jie, CHEN Xin-zhong, LI Yong-le. Assessment of overturning risk of high-speed trains in strong crosswinds using spectral analysis approach[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 174: 103-118. doi: 10.1016/j.jweia.2017.12.024
    [5] 田红旗. 中国恶劣风环境下铁路安全行车研究进展[J]. 中南大学学报(自然科学版), 2010, 41(6): 2435-2443. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201006063.htm

    TIAN Hong-qi. Research progress in railway safety under strong wind condition in China[J]. Journal of Central South University (Science and Technology), 2010, 41(6): 2435-2443. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201006063.htm
    [6] 于梦阁, 张骞, 刘加利, 等. 随机风环境下高速列车运行安全评估研究[J]. 机械工程学报, 2018, 54(4): 245-254. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804036.htm

    YU Meng-ge, ZHANG Qian, LIU Jia-li, et al. Study on the operational safety evaluation of the high-speed train exposed to stochastic winds[J]. Journal of Mechanical Engineering, 2018, 54(4): 245-254. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804036.htm
    [7] BEZOS G M, DUNHAM R E, GENTRY G L, et al. Wind tunnel aerodynamic characteristics of a transport-type airfoil in a simulated heavy rain environment[R]. Washington DC: National Aeronautics and Space Administration, 1992.
    [8] WU Zhen-long, CAO Yi-hua. Numerical simulation of flow over an airfoil in heavy rain via a two-way coupled Eulerian-Lagrangian approach[J]. International Journal of Multiphase Flow, 2015, 69: 81-92. doi: 10.1016/j.ijmultiphaseflow.2014.11.006
    [9] HUANG Sheng-hong, LI Qiu-sheng. Numerical simulations of wind-driven rain on building envelopes based on Eulerian multiphase model[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98: 843-857. doi: 10.1016/j.jweia.2010.08.003
    [10] 任洪鹏. 基于风雨两相流的斜拉索风雨激振的机理研究[D]. 天津: 天津大学, 2012.

    REN Hong-peng. The mechanism research of rain-wind-induced vibration based on wind-rain two phase flow[D]. Tianjin: Tianjin University, 2012. (in Chinese).
    [11] FOROUSHANIS S M, GE Hua, NAYLOR D. Effects of roof overhangs on wind-driven rain wetting of a low-rise cubic building: a numerical study[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 25: 8-51.
    [12] 黄成涛, 王立新. 风雨对飞机飞行安全性的影响[J]. 航空学报, 2010, 31(4): 694-700. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201004008.htm

    HUANG Cheng-tao, WANG Li-xin. Effects of rain and wind on aircraft flight safety[J]. Chinese Journal of Aeronautics, 2010, 31(4): 694-700. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201004008.htm
    [13] 司天文. 风雨联合作用下大跨钢桁拱桥桥上地铁交通行车安全性研究[D]. 成都: 西南交通大学, 2016.

    SI Tian-wen. The operational safety of subway trains on large steel truss arch bridge under cross wind and rain[D]. Chengdu: Southwest Jiaotong Universtiy, 2016. (in Chinese).
    [14] 李军产. 风雨联合对高速运动客车动力作用数值模拟[D]. 长沙: 中南大学, 2012.

    LI Jun-chan. Simulation of the action effect of wind-driven rain on high-speed moving passenger vehicle[D]. Changsha: Central South University, 2012. (in Chinese).
    [15] 张淼. 基于颗粒轨道模型的高速列车多相流数值模拟和分析[D]. 杭州: 浙江大学, 2011.

    ZHANG Miao. Numerical simulation and analysis of high-speed train in multiphase flow based on Lagrangian-Eulerian scheme[D]. Hangzhou: Zhejiang Universtiy, 2011. (in Chinese).
    [16] 敬俊娥, 高广军. 风雨联合作用下高速列车受力数值模拟[J]. 铁道科学与工程学报, 2013, 10(3): 99-102. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201303019.htm

    JING Jun-e, GAO Guang-jun. Simulation of the action effect of wind-drive rain on high-speed train[J]. Journal of Railway Science and Engineering, 2013, 10(3): 99-102. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201303019.htm
    [17] 倪守隆. 风雨与沙尘暴环境下列车运行安全性研究[D]. 大连: 大连交通大学, 2015.

    NI Shou-long. Study on the running safety of train under rain and sandstorm conditions[D]. Dalian: Dalian Jiaotong University, 2015. (in Chinese).
    [18] SHAO Xue-ming, WAN Jun, CHEN Da-wei, et al. Aerodynamic modeling and stability analysis of a high-speed train under strong rain and crosswind conditions[J]. Journal of Zhejiang University—Science A (Applied Physics and Engineering), 2011, 12(12): 964-970. doi: 10.1631/jzus.A11GT001
    [19] 岳煜斐, 曾秋兰, 李振山, 等. 挟雨风对高速列车气动特性及运行稳定性影响的数值模拟[J]. 中国沙漠, 2016, 36(4): 943-950. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS201604011.htm

    YUE Yu-fei, ZENG Qiu-lan, LI Zhen-shan, et al. Numerical simulating effects of rain-loaded wind on the aerodynamic characteristics and running stability of high-speed trains[J]. Journal of Desert Research, 2016, 36(4): 943-950. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS201604011.htm
    [20] NESTOR D M. 横风大雨对高速列车绕流的影响[D]. 北京: 北京交通大学, 2013.

    NESTOR D M. Influence of the crosswind and heavy rain on the flow around a high speed train[D]. Beijing: Beijing Jiaotong University, 2013. (in Chinese).
    [21] 孙自豹, 杜礼明. 基于Gamma雨滴谱的降雨对高速列车气动特性影响[J]. 大连交通大学学报, 2018, 39(6): 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD201806006.htm

    SUN Zi-bao, DU Li-ming. Influence of rainfall on aerodynamic characteristics of high speed trains based on Gamma rainfall spectrum[J]. Journal of Dalian Jiaotong University, 2018, 39(6): 24-29. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD201806006.htm
    [22] LI Tian, ZHANG Ji-ye, RASHIDI M, et al. On the Reynolds-averaged Navier-Stokes modelling of the flow around a simplified train in crosswinds[J]. Journal of Applied Fluid Mechanics, 2019, 12(2): 551-563. doi: 10.29252/jafm.12.02.28958
    [23] 王政, 李田, 张继业. 不同类型横风下高速列车气动性能研究[J]. 机械工程学报, 2018, 54(4): 203-211.

    WANG Zheng, LI Tian, ZHANG Ji-ye. Research on aerodynamic performance of high-speed train subjected to different types of crosswind[J]. Journal of Mechanical Engineering, 2018, 54(4): 203-211. (in Chinese).
    [24] COHAN A C, ARASTOOPOUR H. Numerical simulation and analysis of the effect of rain and surface property on wind-turbine airfoil performance[J]. International Journal of Multiphase Flow, 2016, 81: 46-53. doi: 10.1016/j.ijmultiphaseflow.2016.01.006
    [25] MORSI S A, ALEXANDER A J. An investigation of particle trajectories in two-phase flow systems[J]. Journal of Fluids Mechanics, 1972, 55(2): 193-208. doi: 10.1017/S0022112072001806
    [26] BEST A C. The size distribution of raindrops[J]. Quarterly Journal of the Royal Meteorological Society, 1950, 76(327): 16-36. doi: 10.1002/qj.49707632704
    [27] MARKOWITZ A H. Raindrop size distribution expressions[J]. Journal of Applied Meteorology, 1976, 15(9): 1029-1031. doi: 10.1175/1520-0450(1976)015<1029:RSDE>2.0.CO;2
    [28] ELGHOBASHI S. On predicting particle-laden turbulent flows[J]. Applied Scientific Research, 1994, 52(4): 309-329.
    [29] CHOI E C C. Wind-drive rain and driving rain coefficient during thunderstorms and non-thunderstorms[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89(3): 293-308.
    [30] 张在中, 周丹. 不同头部外形高速列车气动性能风洞试验研究[J]. 中南大学学报(自然科学版), 2013, 44(6): 2603-2608. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201306058.htm

    ZHANG Zai-zhong, ZHOU Dan. Wind tunnel experiment on aerodynamic characteristic of streamline head of high speed train with different head shapes[J]. Journal of Central South University (Science and Technology), 2013, 44(6): 2603-2608. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201306058.htm
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1039
  • HTML全文浏览量:  241
  • PDF下载量:  531
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-08
  • 刊出日期:  2019-10-25

目录

    /

    返回文章
    返回